REPORT ON THE EVALUATION OF THE EFFECTIVENESS OF OPERATION OF AREA VIII RED RIVER CHLORIDE CONTROL PROJECT

RED RIVER CHLORIDE CONTROL PROJECT

EVALUATION PANEL

DR. JACK KELLER, CHAIRMAN DR. HERBERT GRUBB, MEMBER MR. JACK RAWSON, VICE CHAIRMAN MR. JACKSON KRAMER, MEMBER MR. GLENN SULLIVAN, MEMBER

August 8, 1988

Secretary of the Army ATTN: Assistant for Civil Works The Pentagon (Room 2E570) Washington, D.C. 20310

Committee on Environment and Public Works of the Senate SD458 Dirksen--Senate Office Building Washington, D.C. 20510

Committee on Public Works and Transportation of the House of Representatives 2165 Rayburn--House Office Building Washington, D.C. 20515

Gentlemen:

We are pleased to submit the attached report of the Red River Chloride Control Project Evaluation Panel's findings in compliance with Section 1107 of P.L. 99-662. The report details the evaluation of the operational effectiveness of Area VIII of the Red River Chloride Control Project. The Project's objective is to improve the quality of water in the river by removal of salt pollutants. We found the operation of the completed works in Area VIII to be consistent with the Project benefits projected by the economic reanalysis in the U.S. Army Corps of Engineer Memorandum No. 25 of 1980. On the basis of these findings the Panel feels that proceeding with construction of the remaining elements of the Project is justified in accordance with the intent of Section 1107 of P.L. 99-662.

The report provides related background information for the Red River Chloride Control Project with particular emphasis on our analysis of the operational performance of the installed portions of the Project in Area VIII. (Almost 50 percent of the natural chlorides polluting Lake Kemp come from the saline springs and seeps of Area VIII.) The Panel visited the site to see the constructed facilities and met several times to review and provide guidance for the data collection and analysis process. Pertinent information on the history of the Panel's activities and excerpts from the minutes of the various meetings are included in the report.

The Panel decided that the analysis based on daily data collected during the first full year (May 1, 1987 through April 30, 1988) of operation of the Bateman Pump Station (which is where the saline water is removed from the river system) was sufficient to adequately assess the effectiveness of the installed facilities. The data studied quantifies the reduction of chlorides at gaging stations operated by the U.S. Geological Survey in cooperation with the Corps at both Bateman and approximately 50 river miles downstream at Benjamin. Flows were exceptionally high during May, June, and July 1987 and relatively low during the remainder of the test period. This was a fortunate event in that it provided both high- and lowflow conditions for evaluating the project's performance at Benjamin.

In addition to the 1987-88 data, sufficient chloride and flow data had been collected during water years 1971 through 1976 for utilizing in a simulation model to predict operational results. Simulation runs were made assuming the Bateman Pumping Station was operated in a similar manner during 1971-76 as it was during the evaluation period. This simulation resulted in an even greater reduction of the chloride load than occurred during the one-year evaluation period.

The principal findings of importance to the purpose of the Panel's task are:

- * The physical facilities necessary for collecting brine at Bateman and pumping it to Truscott Brine Lake are in place and functioning adequately. The operation of the pumping plant and pipeline has proven successful with very little down time.
- * The control system at the Bateman Pumping Station is operating slightly better and more effectively than was predicted in Memorandum No. 25. Chloride removal during the test period actually exceeded projections.
- * There appeared to be significant flushing of chloride from the alluvium in the intervening reach between Bateman and Benjamin during the high-flow period between May and June 1987 which resulted in high chloride loads passing Benjamin. After this initial flushout,

chloride loads at Benjamin during the low-flow period from September through April 1988 were less than the long-term average anticipated with the Bateman Pumping Plant in operation. As suggested in the design documents, high chloride loads can be expected during high flows in the early years of operation. But an analysis of the data suggests that the long-term average should approximate the anticipated load after the system approaches equilibrium with the Area VIII facilities in operation.

We believe our task has been completed and recommend that authorization be given to continue with the construction of the Red River Chloride Control Project. The Panel greatly appreciates the cooperation and assistance it has received from the Tulsa District, U.S. Army Corps of Engineers, Tulsa, Oklahoma, and the Texas District Office, U.S. Geological Survey. We feel that a note of thanks is in order for both of these units.

Sincerely,

Dr. Jack Keller, Chairman

REPORT

on the

Evaluation of the effectiveness of operation of Area VIII of the Red River Chloride Control Project

Required by PL 99-662

August 1988

PANEL

Position	Member	Representing
Chairman	Dr. Jack Keller	National Academy of Science
Vice Chairman	Mr. Jack Rawson	U. S. Geological Survey
Member	Dr. Herbert Grubb	State of Texas
Member	Mr. Jackson Kramer	Texas Water Commission
Member	Mr. Glenn Sullivan	State of Oklahoma

TABLE OF CONTENTS

<u>Title</u>	Page
List of Panel Members	i
Table of Contents	ii
Definition of Selected terms	V
Executive Summary	
Purpose	I
PART I - Background Information	
Winters of the Oblinitian Octavity of the Oblinitian Octavity	
History of the Chloride Control Studies	1
Prior reports and studies	1
Authorizing laws	1
Sources and Problems	2
Source of contamination	2
Effects of contamination	2
Selected Plan	4
Area V	
Area VII	4
Area VII	
Area VIII	
Area IX	
Area X	6
Area XIII and XIV	
Area XV	
Plan effectiveness	6
Current status	7
Evaluation Panel History	7
PART II - AREA VIII CHLORIDE CONTROL PROJECT	
PART II - AREA VIII CHEORIDE CONTROL PROJECT	
Description of Area WIII	10
Description of Area VIII	
Geohydrology	
Origin of brines	
Geology and brine emission on the South Wichita River	
Operational Guidelines for Bateman Pump Station	
Data Collection Program	
Network	16
Water-quality records	16
Summary of flow and water quality records	18 19
Summary of from and water quartey records	19
PART III - ANALYSES AND CONCLUSIONS	
TIME TIT INVESTIGATION CONCERNSTONS	
Analysis of Hydrologic Data	23
Achievement objectives	23
Performance at Bateman	
Performance at Benjamin	
	20

TABLE OF CONTENTS (CONT.)

Tables

Water Discharges and Chloride Concen Loads For Selected Sites on the So River, Texas, May 1987 - April 198	h Wichita
2 Location and Chloride Loads of Red R Salt Source Areas	er
3 Anticipated Chloride Control Plan	3
Accomplishments According to Desig	7
4 Summary of U.S. Geological Survey's Record Streamflow and Water-Qualit	Programs
for Area VIII South Wichita River 5 Water Discharges and Chloride Concen Loads for Selected Sites on the So	ations and h Wichita
River, Texas, May 1987 - April 198 6 Water Flows and Chloride Concentrati For the South Wichita River Upstre	s and Loads
Bateman Pump Station	
7 Benjamin Monthly Flows	
8 Summary of Average Daily Values of F Actual and Projected Chloride Data Percentages diverted at Bateman Pu	ind
Station 9 Average Water Discharges and Chlorid and Loads Contributed by Interveni	Concentrations Area
Between Bateman and Benjamin, Texa	
10 Estimate of Leaching Between Bateman	and Benjamin . 34
Figures	
<u>Figure</u> <u>Title</u>	Page
Salt Source Areas, Red River Basin .	в
2 Project Plan	C
3 Area VIII - Red River Chloride Contr	-
4 Bateman Monthly Mean Discharges May - April 1988	
5 Bateman Monthly Mean Dissolved-Chlor May 1987 - April 1988	
6 Estimate of the Leaching Progress Be Bateman and Benjamin	reen
7 Comparison Between Chloride Loads Du Pre and Post Pump Periods at Benja	.ng

TABLE OF CONTENTS (CONT.)

APPENDICES

Appendix	<u>Title</u>
A	Letter Authorizing Panel
В	South Wichita River Near Benjamin, Texas, Monthly
	and Annual Means and Loads for October 1970 to September 1976
С	South Wichita River Near Guthrie, Texas, Monthly
	and Annual Means and Loads for October 1970 to
	September 1976
D	South Wichita River at Low Flow Dam Near Guthrie, Texas,
	(Station Nos. 7311782 and 7311783) Daily and Monthly
	Means and Loads for the Months May 1987 - April 1988
E	South Wichita River Near Benjamin, Texas,
	(Station No. 7311800) Daily and Monthly Means and
	Loads for the Months May 1987 - April 1988

DEFINITION OF SELECTED TERMS

<u>Discharge (or Flow)</u> is the volume of water that passes a given point within a given period of time.

Mean discharge is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

Day-second/feet (DSF) is the volume of water passed in one day at a flow of one CFS.

<u>Cubic foot per second</u> (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second, 448.8 gallons per minute, or 0.02832 cubic meters per second.

Discharge weighted average concentration approximates the composition of water, or the concentration of a constituent, that would be found in a reservoir containing all the water passing a given location in a given time after mixing in the reservoir. It is computed by multiplying the discharge for a sampling period by the concentration of individual ions constituents for the corresponding period and dividing the sum of the products by the sum of the discharges.

Tons/day is the quantity of a substance (tons) in solution or suspension that passes a stream section during a 24-hour period. It is calculated by multiplying the product of the daily mean discharge (cfs) and daily mean concentration (Mg/L) by 0.0027.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 micrometer membrane filter. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

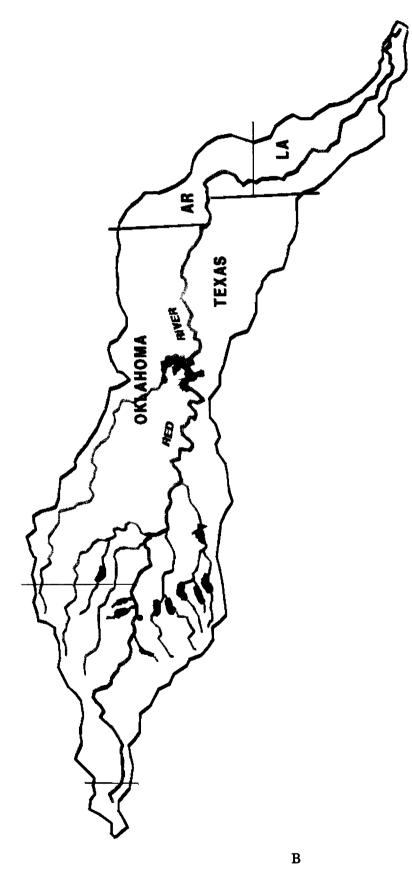
<u>Milligrams per liter</u> (Mg/L) is a unit for expressing the concentration of chemical constituents in solution and represents the mass of solute (milligrams) per unit volume (liter) of water.

Specific conductance is a measure of the ability of water to conduct an electrical current and is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentrations of ions in solution and can be used for approximating the concentrations of dissolved solids and major ions in the water. These relationships are not constant from stream to stream and even may vary for the same source with changes in the composition of the water.

<u>Water Year</u> Begins on October 1 of the preceding year and ends September 30 of the year of record, i.e. water year 1988 begin in October 1, 1987. EXECUTIVE SUMMARY

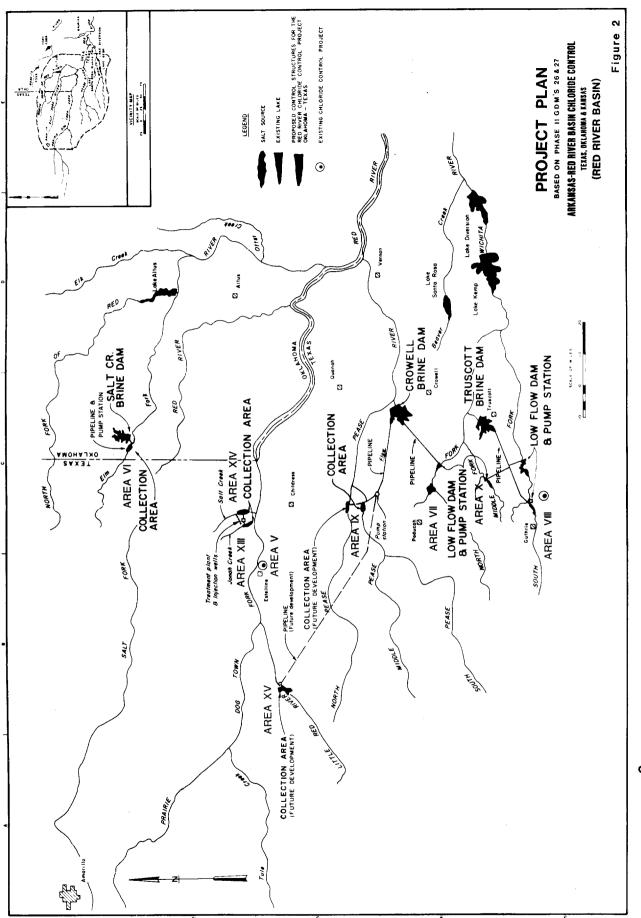
EVALUATION OF THE EFFECTIVENESS OF OPERATION OF AREA VIII OF THE RED RIVER CHLORIDE CONTROL PROJECT

EXECUTIVE SUMMARY


Approximately 3,600 tons of dissolved salt are carried into the Red River each day through natural salt sources located in the upper reaches of the river's drainage area. Of the ten identified natural salt sources, one is located in Oklahoma, and the remaining nine are in Texas. Salt springs along the river have rendered it, and Lake Texoma—which receives an annual average of 3.1 million acre-feet of water—virtually unusable as sources of water for irrigational, industrial, and municipal use. Water use over the Red River Basin (see Figure 1) varies from primarily agricultural irrigation in the upper reaches in Texas and Oklahoma to industrial in Arkansas and Louisiana. Municipal uses are widespread through the basin.

Projected population and industrial growth rates for the basin show that increasing demands for water will exhaust all present sources in the near future, thus requiring the use of Red River water. Currently, virtually all the good quality stream water within the region has been appropriated, thereby limiting further irrigation, municipal and industrial development. Some water for irrigation is presently being taken from the Red River and Lake Texoma. However, use of the poor quality water has reduced the average crop yield and lowered crop values along with damaging land and equipment. Existing industrial and municipal treatment facilities, piping systems, water heaters, and other household appliances are also being damaged by the high chloride level. Millions of acre-feet of groundwater in the shallow alluvium and terrace deposits along the Red River and its tributaries have been polluted due to interaction with stream flows. Control of salt springs in the upper reaches of the river and its tributaries would provide surface water for thousands of irrigable acres along the river and at the same time improve the quality of groundwater supplies. If contributing salt springs are controlled, the Red River could be made usable along its entire reach, thereby diminishing the need to develop other sources of supply.

This report details the evaluation of the operational effectiveness of Area VIII of the Red River Chloride Control Project (see Figure 2). The project's objective is to improve the quality of water in the river by removal of salt pollutants. Area VIII is located on the South Fork of the Wichita River and utilizes a collection and disposal concept designed to intercept and divert 85 percent of the estimated 195 average daily tons of chlorides entering the South Wichita River.


BACKGROUND

Studies to control natural salt pollution in the Arkansas and Red River Basins began in 1957 when Congress directed the U.S. Public Health Service to locate the major sources of natural salt pollution in those basins. In the Red River Basin (Upper Red River and Wichita River), the ten major sources located were identified as Areas V, VI, VII, VIII, IX, X, XI, XIII, XIV, and XV, and the U.S. Army Corps of Engineers was directed to determine the costs and benefits of alternative control plans. A survey report was completed in 1966 that recommended chloride control plans at the salt sources on the

RED RIVER BASIN

FIGURE 1

Wichita River portion which includes Areas VII, VIII, and X. In 1974, the Water Resources Development Act provided special authorization to construct control measures at Area VIII on the Wichita River. Construction of the Bateman Pump Station and Truscott Brine Lake was initiated in 1976. The Water Resources Development Act of 1986 (PL 99-662) amended the previous laws and authorized construction of the remaining elements of the Red River Basin project, subject to a favorable report by a review panel established to evaluate the effectiveness of operation of Area VIII of the Red River Chloride Control Project, and a finding of it being consistent with the project benefits projected in Memorandum No. 25, completed in November 1980. The panel consists of:

Dr. Jack Keller (Panel Chairman)
Department of Agricultural and
Irrigation Engineering
Utah State University

Mr. Jack Rawson (Panel Vice-Chairman)
Associate District Chief,
Texas District, Water Resources Division,
U.S. Geological Survey
Austin, Texas

Dr. Herbert Grubb Director of Planning Texas Water Development Board

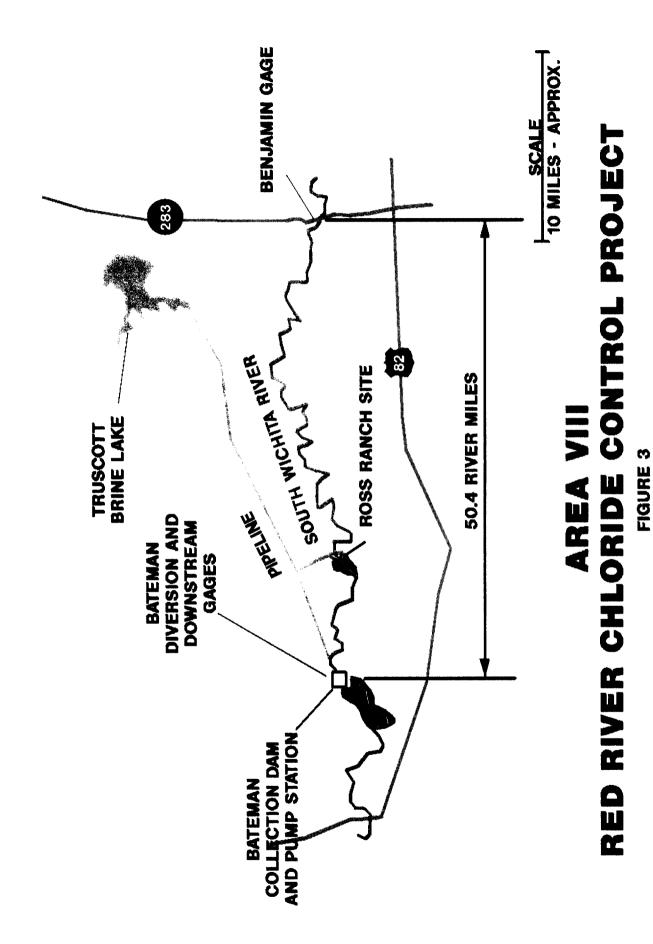
Mr. Jackson H. Kramer State/Federal Relations Coordinator Texas Water Commission

Mr. Glenn Sullivan, Secretary
Department of Natural Resources
State of Oklahoma

PROJECT PLAN

Area VIII is on the South Fork of the Wichita River about 5 miles east of Guthrie near the center of King County, Texas, and is about 4 miles north of U.S. Highway 82. Almost 50 percent of the natural chlorides polluting Lake Kemp come from the springs and seeps of Area VIII. Four springs which emerge from cavernous openings in the gypsum cliffs on the north side of the river have combined flows of approximately two cubic feet per second. Area VIII produces an average daily chloride load of 195 tons.

The plan for Area VIII includes two low-flow collection dams which are required on the South Fork of the Wichita River to collect brine which is to be pumped to Truscott Brine Lake. One completed dam (Bateman), consists of a 5-foot high deflatable weir. The weir impounds a pool to facilitate pumping and deflates during periods of high flows. The Bateman Pump Station transports the brine via 23 miles of pipeline to Truscott Brine Lake for disposal. The second brine collection structure identified in the selected plan would be constructed only as and if needed, and would be located at


river mile 61.5 (Ross Ranch), with the diverted brine also being pumped to the Truscott Brine Lake.

A network of continuous-record streamflow and water quality stations on streams in the Red River basin has been operated for many years by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and other Federal, state, and local agencies. Information on the location, drainage area, period of record, and types of instrumentation for stations applicable to the project are summarized in the report. The panel decided that a study of the data collected based on one year of operation of the Bateman Pump Station would be sufficient to adequately assess the effectiveness of its operation. This data quantifies the reduction of chlorides at both the Bateman and Benjamin gages. The records on which the project results are based are for the period from May 1, 1987, through April 30, 1988. Locations of the Bateman Pump Station and the downstream gaging stations are shown on Figure 3. The complete daily records of the quantity and quality of the water diverted and the flow at stations up and downstream from the low-flow dam and near Benjamin are included in the report (Table 1). Monthly summaries are also provided which detail the quantities of flow and the concentrations and loads of chloride in flows diverted by pumpage; the quantities of flow and concentrations and loads of chloride in such flow that passed downstream from the low-flow dam due to minor seepage under and around the dam, due to deflation of the dam during high flows and when breaks were being repaired in the pipeline (spillage); and the quantities of flow and concentrations and loads of chloride at the station near Benjamin. These data were deemed by the panel to be sufficient to allow proper evaluation of the Area VIII operation.

PROJECT RESULTS

A comparison of the records show that diversions of the more saline low flows resulted in an 86-percent reduction of the chloride load in the flow passing downstream from the Bateman Pump Station. This occurred even though an average of more than 138 tons/day of chloride was spilled during the test period when two pipeline breaks occurred reducing the effectiveness of the pumping effort, as well as record high flows in May and June 1987. However, high flow periods will occur from time to time throughout the life of such a project but on average should not constitute a very large portion of the time. Likewise, pipeline breaks will occur during the operational phase, but the total down-time is not expected to rise in future years and may even drop as experience in repairs is acquired. Projected chloride diversions based on the Bateman pumping operations were simulated on older data collected during water years 1971 through 1976. The simulation resulted in an even greater reduction of the chloride load than occurred during the one-year evaluation period.

The water quality records for both the Bateman and Benjamin stations are considered to be representative of the long-term prepumping conditions. During the one-year period, flows at Benjamin averaged 37 cubic feet per second and chloride loads averaged 153 tons/day. According to the Chloride Control Plan for Area VIII, pumpage of an averaged chloride load of 142 tons/day at Bateman would reduce the average chloride load at Benjamin to about 68 tons/day. However, pumpage of an average chloride load of 192 tons/day at Bateman during the one-year period reduced the average chloride

F

TABLE 1

WATER DISCHARGES AND CHLORIDE CONCENTRATIONS AND LOADS FOR SELECTED SITES ON THE SOUTH WICHITA RIVER, TEXAS, MAY 1987 - APRIL 1988

	ABC	ABOVE BATEMAN	2	BATI	BATEMAN DIVERSIONS	SIONS	SPILLED	BELOW	BATEMAN	BELOW BATEMAN	EMAN NEAR	NEAR BENJAMIN
	Water		Disaclasd	Water		Dissolved	Water		Dissolved	Water discharge		Dissolved
_	af record		chloride	ñ .		chloride			chloride	1	O	chloride
Period	(cfs)	(Mg/L) (tons/day)	ons/day)	(cfs)) (7/5W)	(Mg/L) (tons/day)	(cfs)	(Mg/L) ((Mg/L) (tons/day)	(cfs)	(Mg/L) ((tons/day)
May 1987	58.7	1,960	313	5.7	10,000	155	53	1,100	158	249	920	613
June	14.0	5,890	220	11	6,100	180	3.0	5,100	40	108	1,700	200
July	10.8	7,870	232	8.0	8,600	187	2.8	5,800	45	32	2,800	239
August	7.86	10,000	218	7.1	10,000	197	.76	10,000	21	21	2,400	142
September	7.86	10,000	218	7.8	10,000	217	90.	8,800	1.5	8.2	2,600	09
October	96.9	11,000	201	6.9	11,000	200	90.	000'6	1.4	1.3	5,200	19
November	7.35	11,000	214	7.3	11,000	213	.05	9,400	1.2	1.1	2,900	18
December	7.96	10,000	220	7.7	10,000	145	.26	009'6	8.9	3.6	5,400	52
January 1988	7.30	098'6	200	5.2	10,000	145	2.1	9,500	55	5.6	4,700	71
February	7.45	11,000	218	7.3	11,000	214	.15	11,000	4.1	3.0	5,700	45
March	7.45	11,000	224	7.4	11,000	223	.05	10,000	1.3	3.9	4,100	42
April	6.21	11,000	187	5.4	11,000	163	. 81	11,000	24	4.0	3,800	40
May 1987- April 1988	12.5	6,520	222	7.2	9,770	192	5.25	2,100	30	2.00	1,550	153
October 1970- September 1976	5.25	10,700	154							-		

load at Benjamin to only 153 tons/day. This discrepancy is readily explainable. As shown in Table 1, flows were exceptionally high during May, June, and July 1987 (May being the wettest month of record). In a way, this was a fortunate event in that it provided both high-flow and low-flow conditions for evaluation of the project's performance at Benjamin. Data indicate the much greater-than-average flows in May and June 1987 (the majority of which originated from flood runoff downstream of Bateman Pump Station) resulted in a significant flushing of chloride from the alluvium along the South Wichita River between Bateman Pump Station and Benjamin. After an initial flushout, dramatically lowered chloride loads accompanying low seasonal flows demonstrated the effectiveness of the Bateman Pump Station Operation.

FINDINGS OF THE PANEL

It is specifically noted and emphasized by the Panel that under the economic reanalysis contained in Memorandum No. 25, no benefits were credited to the project until all project elements of the areas recommended for construction were completed. Water quality benefits were only phased in as Red River water was actually used. The benefits were then allowed to grow as the use of the Red River water increased. The Panel would also observe that the economic reanalysis of 1980 was based upon appropriate concepts and reached appropriate conclusions. Therefore, any reanalysis of the benefits was not only outside the charge and authority of the evaluation Panel, but also impossible because benefits cannot begin accruing until such time as the water is used.

Upon review and evaluation of the data, the Panel concludes that the control system at the Bateman Pumping Station is operating better and more effectively than was predicted in Memorandum No. 25. Chloride removal during the test year actually exceeded projections and the expected level of control over the anticipated life of the project is estimated to be at least 87 percent, which again, exceeds projections.

PURPOSE

The purpose of this document is to present the findings of an effectiveness evaluation study on the operation of Area VIII (Bateman Pump Station portion) of the Red River Chloride Control Project by a five-member review Panel in accordance with paragraph C, Section 1107 of the Water Resources Development Act of 1986 (PL 99-662), 17 November 1986:

"(c) Construction of remaining elements of the project involving the Red River Basin shall be initiated in accordance with the recommendations regarding general design memorandum numbered 25 by the director of civil works on behalf of the Chief of Engineers, dated August 8, 1977. Such construction shall commence upon transmittal of a report to the Secretary and to the Committee on Environment and Public Works of the Senate and the Committee on Public Works and Transportation of the House of Representatives of a favorable finding on the effectiveness of the operation of area VIII, to be made by a Panel consisting of representatives of the United States Geological Survey and the Texas Water Commission, a person selected by the National Academy of Sciences, and two other qualified persons to be appointed by the Secretary with the concurrence of the Governors of Texas and Oklahoma. The Panel shall assess the improvement in water quality downstream of area VIII to determine its consistency with the water quality assumed in the development of project benefits in the economic reanalysis of the project completed in November 1980. Such report shall be submitted to the Secretary and to such committees no later than three years after the date area VIII commences operation. Cost sharing for construction on the Red River Basin project initiated under this section shall be the same as the cost sharing for Area VIII of the project."

PART I

Background Information

HISTORY OF THE CHLORIDE CONTROL STUDIES

The Red River Basin covers nearly 94,000 square miles in the five state area of New Mexico, Oklahoma, Texas, Arkansas, and Louisiana in the south-central United States. Runoff from this area represents a major national and regional water resource. However, this resource is unsuitable for most beneficial uses because of poor water quality. The primary pollutants are chloride salts, principally from natural sources. The effects of this pollution are widespread, severely limiting the use of the stream for municipal, industrial, and agricultural water supply. Studies to control the natural salt pollution were begun in 1957 when Congress directed the U.S. Public Health Service to locate the major sources. Ten major source areas were identified.

PRIOR REPORTS AND STUDIES

In 1959, Congress directed the Corps of Engineers to determine the costs and benefits of alternative control plans. The U.S. Army Corps of Engineers has developed a plan to control the natural salt pollution at the source areas. The authorized Chloride Control project will eliminate 69 percent of the natural chloride pollution resulting in substantial improvements in the total dissolved solids and chloride concentrations of the basin's waters.

Experimental work at Estelline Springs, Texas (Area V), in the Upper Red River Basin, was authorized in 1962, and an effective control plan was completed two years later. A survey report completed in 1966 recommended Chloride Control plans at the salt sources on the Wichita River portion (Part I) which include Areas VII, VIII, and X. Part I was authorized by Congress in 1966, and preconstruction planning was initiated in 1968. The remaining areas in the Red River Basin (Part II) were the subject of a second survey report completed in 1966 which recommended Chloride Control plans at five of the remaining six salt source areas. Area XI was not recommended for further studies. Part II was authorized for construction in 1970. Detailed studies for the three areas in the Wichita River Basin were completed in 1972. In 1974, the Water Resources Development Act provided special authorization to construct control measures at Area VIII on the Wichita River. Construction at Area VIII was begun in 1977.

In 1976, General Design Memorandum No. 25 was submitted recommending control measures for the Wichita and Red River areas. Area XV and the North Pease River portion of Area IX were not considered economically feasible at that time and were recommended for future consideration. In 1978, the Chief of Engineers requested an economic reanalysis of the entire Red River Chloride Control plan to include a significantly more detailed benefit analysis. The economic reanalysis was completed in 1980. Subsequent engineering and design studies have continued to further refine the project plan. The further refinement of the project was made in General Design Memorandum Nos. 26 and 27 completed in 1978 and 1982, respectively.

AUTHORIZING LAWS

The Chief of Engineers recommended Part I of the Arkansas-Red River Basin Water Quality Control Study for Areas VII, VIII, and X, Wichita River, Red River Basin, in Senate document No. 110, 89th Congress, 2nd session. The

Flood Control Act of 1966 (PL 89-789, November 7, 1966) incorporated Senate Document No. 110 by reference and authorized Part I. Actual construction was not to be initiated until Part II was authorized. The Flood Control Act of 1970 (PL 91-611, 31 December 1970) amended the 1966 Act and authorized Part II of the study for Areas VI, IX, XIII, XIV, and XV in the Red River Basin. Construction was not to be initiated until approved by the Secretary of the Army and the President. Part II of the study was recommended by the Chief of Engineers in his report dated May 6, 1970. The Water Resource Development Act of 1974 (PL 93-251, March 7, 1974), specifically authorized construction of Area VIII without the approval of the Secretary of the Army and the President. The Water Resources Development Act of 1976 (PL 94-587, October 22, 1976) amended the Flood Control Act of 1970 thus eliminating the required approval of the President.

The Water Resources Development Act of 1986 (PL 99-662) amended the previous laws and authorized construction of the remaining elements of the Red River Basin project, subject to a report of favorable findings by a review Panel regarding the effectiveness of the operation of Area VIII.

SOURCES AND PROBLEMS

SOURCE OF CONTAMINATION

During the Permian Period, about 230 million years ago, much of the Texas panhandle, southeastern New Mexico, western Oklahoma, and southern Kansas was covered by a shallow inland sea. Over time evaporation precipitated salts in the sea water leaving thick deposits of halite which are currently present in geologic formation underlying the area. Natural chlorides from ten major salt source areas in the Red River Basin contribute about two-thirds of the average daily load of 3,300 tons/day of chlorides entering the river. The process by which this occurs is as follows: fresh groundwater migrates downward and laterally to the salt beds, which are 15 to 120 meters below the surface, dissolving the salt to produce brine. The brine is then forced laterally and upward by hydrostatic pressure through aquifers or through joints, fractures, and solution channels until emitted at the surface. some areas the brine is emitted as a flowing spring. In others, it is emitted from seeps along the stream bed and becomes part of the surface waters. Contaminants further degrade the surface flows when capillary action causes surface encrustations (salt flats). The locations of the ten major salt sources in the Red River Basin are shown in Figure 1. Loads from these areas vary from 48 tons of chloride per day at Area X in Texas to over 510 tons of chlorides per day at Area VI in Oklahoma (see Table 2).

EFFECTS OF CONTAMINATION

Natural pollution renders the Red River generally unsuitable as a dependable source of irrigation and municipal and industrial water supply. In the western part of the basin, agricultural potential is severely restricted since thousands of acres of irrigable land cannot be irrigated from the river, or can only be irrigated to a limited extent. Because of high salinity, municipalities and industries in the benefitted areas (Arkansas, Louisiana, Oklahoma, and Texas) will suffer damages to pipes, equipment, and household appliances and possibly suffer adverse health affects from use of untreated water, pay the high cost of elaborate treatment

TABLE 2 LOCATION AND CHLORIDE LOADS OF RED RIVER SALT SOURCE AREAS

Area	Location	Receiving Stream	Chloride Load (ton/day)
V	Hall County, TX	Prairie Dog Town Fork of Red River	300ª
VI	Harmon County, OK	Elm Fork of North Fork Red River	510
VII	Cottle County, TX	North Fork of Wichita River	186
VIII	King County, TX	South Wichita River	195 ^b
ΙX	Cottle County, TX	North and Middle Pease River	342
x	King County, TX	Middle Fork of Wichita River	48
ΧI	Briscoe & Armstrong	Prairie Dog Town Fork of Red River	220
XIII	Childress County, TX	Jonah Creek - Tributary of Prairie Dog Town Fork of Red River	420
KIV	Childress County, TX	Salt Creek - Tributary of Prairie Dog Town Fork of Red River	150
ΚV	Hall County, TX	Little Red River - Tributary of Prairie Dog Town Fork of Red Ri	

processes to reduce the salinity, or obtain fresher supply sources from greater distances to fulfill their demands for water. In some cases, the water can and is being used by withdrawing water during high flows when the chloride concentrations are diluted. This manner of usage requires large offstream storage to supply needs during prolonged low-flow periods. The water can also be used for municipal and industrial purposes by diverting flows and mixing with fresher water sources. However, this method likewise limits the quantities which can be used because mixing ratios must be carefully monitored to maintain acceptable and consistent water quality.

The large quantities of water in the Red River that could be available for water supply have not been fully used because of the natural salt pollution. If this salinity problem were reduced or eliminated, much greater use could be made of existing water supplies, and the need to construct

bSum of calculated loads at Bateman and Ross Ranch.

additional reservoirs and to mine limited ground water supplies would be diminished.

SELECTED PLAN

The selected plan for the salt emission areas authorized for construction is presented in this section. An existing ring dike at Area V is to be operated as constructed. No technically feasible control plan was developed for Area XI. The control plans for Area XV and the North Pease River portion of Area IX, although technically feasible, were not economically justified and were recommended for future consideration. The selected plan includes Areas VI, VII, VIII, IX (Middle Pease River only), X, XIII, and XIV and three brine lakes (Salt Creek, Crowell, and Truscott). The overall plan is illustrated in Figure 2. Descriptions of the various elements of the Chloride Control project follow.

AREA V

Estelline Springs is approximately 1 mile east of Estelline, Texas, near the Hall-Childress County line (Figure 2). The spring is in the flood plain of the Prairie Dog Town Fork of the Red River at about river mile 1,073. Salt water in this area is brought to the surface through the one large spring and several small seeps. Under natural conditions the average rate is about 4 cubic feet per second (cfs) and contributes 300 tons of chlorides per day to Mountain Creek, a tributary of the Prairie Dog Town Fork. An experimental project was constructed at the spring to test the application of backhead as a means of suppressing individual brine springs. The structure around the springs is a circular earthen dike 9 feet high and 340 feet in diameter with an impervious core to firm rock. In January 1964, the spring flow was completely suppressed by an average 5 feet of backhead. The spring has since maintained a reasonably constant level and the ring dike contains about 80 percent of the total chloride load emitted from Area V. The experimental status of the structure has been changed to an operational status as a permanent control installation.

AREA VI

The Area VI plan includes brine collection on the Elm Fork of the Red River and disposal in the Salt Creek Brine Lake (Figure 2). In the plan, collection of brine on the Elm Fork is accomplished by construction of a 115-acre brine detention reservoir. A dam across the Elm Fork encloses the upstream and downstream limits of the emission area, the present Elm Fork channel and adjacent flood plain through the south bank emission zone. Diversion of the Elm Fork at a point above the detention site is accomplished by a 200-foot bottom width channel excavated in the flood plain north of the present Elm Fork channel. From the collection facilities, the brine is pumped to the Salt Creek Brine Lake through a 4-mile pipeline. The Salt Creek Brine Lake dam is a 4,500-foot earthen embankment. The lake has a surface area of 735 acres at the top of the brine storage pool. The total controlled storage is 33,430 acre-feet for control of the 100-year frequency storm and for 100 years accumulation of brine and sediment.

AREA VII

In the plan for Area VII, brine is collected on the North Fork of the Wichita River by a low flow dam at river mile 213 and stored in Crowell Brine Lake (Figure 2). The low flow dam has a five-foot high deflatable weir that extends across the existing stream channel. The weir impounds a minimum pool to facilitate pumping and deflates to eliminate a channel restriction during high flow periods. The chloride concentration during flood conditions is too low to justify collection. Pumps and pipeline are used to transport the brine to Crowell Brine Lake. Crowell Brine Lake is located in Ford County at mile 1.6 on Canal Creek, a Pease River tributary. This lake is the disposal facility for Area VII. Storage for brine from Area IX is also be provided. The brine storage dam consists of an earthen embankment and the lake has a surface area of 3,820 acres at the top of the brine storage pool and 4,190 acres at the top of the flood control pool. The total controlled storage is 191,000 acre-feet for control of the 100-year frequency storm and 100-year accumulation of brine pumped from Areas VII and IX, and for future development at Areas IX and XV.

AREA VIII

The plan for Area VIII includes two low flow collection dams which are required on the South Fork of the Wichita River to collect brine which is be pumped to Truscott Brine Lake (Figure 2). One dam, already completed at river mile 74.9, consists of a 5-foot high deflatable weir. The weir across the existing stream channel impounds a pool to facilitate pumping and deflates during periods of high stream flow. The brine is transported by a pumping facility (Bateman Pump Station) and pipeline to Truscott Brine Lake. If needed, the second brine collection structure will be located at river mile 61.5. The need will be determined after operation of the upstream collection facility. Pumping facilities (Ross Pump Station) will be built to pump the brine through a pipeline to Truscott Brine Lake for disposal. Truscott Brine Lake is at mile 3.6 on Bluff Creek, a south bank tributary of the North Fork of the Wichita River. The earthfill embankment has a maximum height of 100 feet above the streambed and a total length of about 14,800 feet. The lake has a surface area of 2,980 acres at the top of the brine storage pool and 3,090 acres at the top of the flood control pool. The total controlled storage is 116,200 acre-feet for control of the 100-year frequency storm and 100 years accumulation of brine and sediment. Truscott Brine Lake is designed to contain brine flows from collection facilities at Areas VIII and X.

AREA IX

The Area IX plan consists of a surface collection system and a pipeline system, with disposal at Crowell Brine Lake (Figure 2). The plan is to collect flows up to a maximum of 20 cfs from the Middle Pease River, which contains 190 tons/day of chlorides. The collection structure consists of a reinforced concrete structure with a fiberglass grate. The water is diverted over the collection structure by an overflow and training dike. A 200-acrefoot storage pond is provided to minimize pipeline size. The proposed storage pond has an average area of 49 acres and a maximum depth of 7-feet. The collection system for the North Pease is recommended for future consideration.

AREA X

The Area X plan consists of a low flow dam which collects brine on the Middle Fork of the Wichita River at mile 20.5 (Figure 2). The low flow dam is similar to that described for Area VIII. The brine is pumped to to Truscott Brine Lake (discussed in detail with Area VIII).

AREAS XIII AND XIV

The plan for Areas XIII and XIV consists of a subsurface collection and pipeline system, water treatment, and subsurface disposal (Figure 2). Area XIII has three large-diameter wells and Area XIV has two large-diameter wells drilled into the brine aquifer. The wells are about 25 feet deep. The raw brines from the collection wells are transported through pipelines to a treatment plant and then to injection wells for disposal. The injection wells are drilled into the Ellenburger formation about 5,800 feet below the surface. Five injection wells are required for both Areas XIII and XIV.

AREA XV

The Chloride Control plan for Area XV was not economically feasible and is recommended for future development. The collection facility considered consisted of a subsurface cutoff wall combined with a shallow well system. Three separate collection areas are used: Bluff Creek, Lost Mule Creek, and the main stem of the Little Red River. The subsurface cutoff walls are located at the mouths of Bluff and Lost Mule Creeks and upstream from the Highway 70 bridge. The system design is similar to that discussed for Area VI. The shallow well system is located upstream from the subsurface cutoff wall and is of the same design as proposed for Area IX. Brine from both the subsurface cutoff and the shallow well system would be pumped through a pipeline system for that area to Crowell Brine Lake for disposal. Crowell Brine Lake was discussed in the plan of improvement for Area VII.

PLAN EFFECTIVENESS

The objective of the Chloride Control project is to provide the most practical means of improving the quality of water in the Red River Basin for beneficial uses. It is estimated that the selected plan will be very effective in accomplishing the objective. The natural chloride loadings and the expected effectiveness are presented in Table 3 for each salt source area. Table 3 is quoted from "Supplemental Data to Arkansas - Red Basin Chloride Control, Red River Basin, Design Memorandum No. 25, General Design, Phase I - Plan Formulation," Vol. 1, Department of the Army, Tulsa District, Corps of Engineers, Tulsa, Oklahoma, November 1980; page II-16.

TABLE 3

ANTICIPATED CHLORIDE CONTROL PLAN ACCOMPLISHMENTS ACCORDING TO DESIGN

	Estimated Average		
	Na tural	Estin	nated
Salt	Chloride Load	Chlorides (Controlled
Source Area	(tons/day)	(tons/day)	(Percent
V	300	240	80ª
VΙ	510	420	82
VII	186	157	84
VIII	195 ^b	165	85
IX	342	190	60
Х	48	40	84
XI	220	-	_
XIII	420	370	88
XIV	150	130	87
XV	120	-	-
Total Identified	•		
Natural Source	2,491	1,712	69

aRing dike operational since January 1964

Source: Design Memorandum No. 25, Vol. 1, Department of the Army, Tulsa District, Corps of Engineers, Tulsa, Oklahoma, November, 1980; Page II-16

CURRENT STATUS

Preconstruction planning for the Red River Chloride Control Project is complete. Plans and specifications have been completed for portions of Areas VII and X which would allow construction to be initiated when funds become available. Plans could be completed quickly for a portion of Area VI so that construction could also be initiated when funds become available.

As previously stated, Area VIII and Truscott Brine Lake were authorized for construction in March 1974. Construction of the Bateman Pump Station and Truscott Brine Lake was initiated in 1976 and the project was essentially complete and declared operational in May 1987.

EVALUATION PANEL HISTORY

In accordance with PL 99-662 an evaluation study Panel was established to evaluate the effectiveness of operation of Area VIII of the Red River Chloride Control Project. The Panel consists of:

Dr. Jack Keller (Panel Chairman)
Professor, Department of Agricultural and
Irrigation Engineering
Utah State University
Logan, Utah

bSum of calculated loads at Bateman and Ross Ranch.

Mr. Jack Rawson (Panel Vice-Chairman)
Associate District Chief,
Texas District, Water Resources Division,
U.S. Geological Survey
Austin, Texas

Dr. Herbert Grubb Director of Planning Texas Water Development Board Austin, Texas

Mr. Jackson H. Kramer State/Federal Relations Coordinator Texas Water Commission Austin, Texas

Mr. Glenn Sullivan Secretary of Natural Resources State of Oklahoma Oklahoma City, Oklahoma

The first meeting of the evaluation Panel was held in Wichita Falls, Texas, on 23 October 1987. The purposes of this meeting were to officially convene the Panel, to brief the Panel on the background and objectives of the entire project, and update members on the status of Area VIII and the data collection program being conducted by the United States Geological Survey (USGS). This was accomplished by a series of presentations by the Tulsa District, U.S. Army Corps of Engineers, and the USGS, and aerial reconnaissance and field visit to Bateman Pump Station and Truscott Brine Lake. The following quotations from the minutes express the important decisions of the meeting:

"4. ...It was generally concluded upon by all present that the data currently being collected at the Bateman gages (located upstream and downstream of the Bateman Pump Station) and the Benjamin gage (located on the South Fork of the Wichita River, approximately 50 river miles downstream of Bateman) were all that could be effectively used and that this data should be sufficient to allow proper evaluation of the effects of Area VIII operation. This data is to be used to show the reduction of chlorides in tons/day and mg/l at both the Bateman and Benjamin gages."

The Panel requested the Corps to assemble the following information for the follow-up meeting:

- "a. A correlation of the data collected at the Bateman and Benjamin gages to allow:
- (1) Synthetic development of stream flows and loads for periods when records are not available.
- (2) Determination of the predictability of stream flow and loads.

- b. The expectations and assumptions made by the Corps of the response of the South Fork of the Wichita River at the Benjamin gage in terms of chloride loads and concentrations used in cleanup evaluations and benefit analysis.
- c. Physical sample data for the alluvial and stream flows for the South Fork and its tributaries above the Benjamin gage.
- d. Any alluvial geotechnical data available in the reach between the Bateman and Benjamin gages."

At the November 30 meeting data requested were assembled by the Corps and reviewed by the Panel and the following decisions, as quoted from the minutes, were reached.

- "11. Discussion followed on the probability and mechanism for flushing out the brines stored in the alluvial pore water between Bateman and Benjamin. It was concluded that due to the nature of the fine-grained alluvium, unless some major event occurred which could cause a mixing of pore water for the full depth of the alluvium (on the average of 20 feet), these brines would remain in place for the entire life of the project without causing any detrimental effects. The Panel agreed that no additional geotechnical analysis need be made.
- "12. Mr. Bob Brown then made a presentation concerning project benefits as presented in the November 1980 report and the economists expectations concerning the water quality passing the Benjamin gage. The Panel agreed and restated their positions from the initial meeting that it would be outside the charge and authority of the evaluation Panel to attempt a reanalysis of the benefits.
- "13. The Panel recognized that the period of (May October 1987) for the operation of Bateman Pump Station represents an extreme wet period. This produced a higher concentration-duration curve than the long term average concentration-duration curve projected in the November 1980 report for the modified conditions. Therefore, the Panel recommended that collection be continued in order to make a better comparison between actual modified conditions and those projected in the November 1980 report.
- "14. After considerable discussion concerning the data presented, the Panel decided that they would like to see some comparisons made using mass curves and the data from the historical period of record, the forecast collectable flows and loads, and the actual measurements from the period of operation. Using the historical data available for the Benjamin gage, the Corps was instructed to develop a single mass curve, plotting volume (in ac-ft) versus time. Then using the same type of curve for the period of time representing one year before pumping (May 1986 through April 1987) to the present time, the Corps is to find a "best fit" match with the historical mass curve to designate a period of time that will be used to judge the results at the Benjamin gage.

- "15. Mass curves, plotting load of chlorides (tons) versus time will be developed and compared for the historical data and the data from one year before pumping to the present. The deviation of these two curves should provide a reasonable indication of the amount of tonnage removed by the operation of the Bateman Pump Station. An example of these curves is attached.
- "16. The Panel also requested that another set of curves be developed. These curves will be in the form of the "scatter diagrams" presented by Mr. Fly. The period of record from 1971 through 1976 is representative of the entire historical period of record available for the Benjamin gage, and there is also data for the Bateman gage. This historical data will then be used to develop a forecast diagram (assuming the Bateman pumping station was in operation) to be compared with data collected during the actual (current) period of operation. An example of such a curve is attached."

At the meeting of February 18, the following decisions (quoted from the minutes) follows:

- "5. Dr. Keller inquired as to the time the Corps expects benefits to start being realized from the project and asked what our time scale was for the system to stabilize, as included in the 1980 report.
- Mr. Jim Sullivan indicated that no benefits were to be counted until all proposed elements of the project became operational. In the 1980 report, the economic analysis was based on starting the benefit flow upon the completion of the entire works in 1990. At this time, the start of construction of the remaining project elements is indeterminate until Congress appropriates construction funding for that purpose. With continued funding, construction of the remaining project could be complete in about 10 years.
- "6. Dr. Keller then opened for discussion the Memorandum for Record of the 30 November 1987 1 December 1987 meeting of the Panel. It was determined that Item 11 on page 3 of the Memorandum for Record dated 2 December 1988 should be revised to say, "We agree, in a sense, that no additional geotechnical analysis is needed. We feel that in view of the data, that there may be considerable brine coming from the leachate between Bateman and Benjamin." The second sentence of paragraph 13 should be changed to read, "This produced a concentration-duration curve which is not comparable to the long term average concentration-duration curve projected in the November 1980 report for the modified conditions...
- "7. A general discussion of the data presented, followed. The attempt to compare the recent data at Bateman and Benjamin with the historical data at these gages over the period 1971-1976 did not appear to provide better insight into understanding the effects of diversion at the Bateman pump station. There were, however, windows of time in the prediversion data recorded for Bateman and Benjamin that seemed to compare with Data from both stations after Area VIII was placed in operation in May 1987. There were two periods of a

rather high flush of water and taper off of the flow in the period of time beginning October 1, 1986, on into the 1988 water year.

Mr. Fly was asked to provide a mass curve, scatter diagram and double mass curve analysis of the data during these periods of time by laying one plot on top of the other. A search should be made to find other periods of time that compare; these time periods should have similar flows at Bateman and Benjamin, and similar previous history and conditions both prior to and after beginning operation of the Bateman pump station. The mass curves, double mass curves and scatter diagrams desired for each window of time found comparable will contain four sets of points all starting from the same origin..."

During the course of the meetings it was decided by the evaluation Panel that a study of the data collected based on one year of operation of Bateman Pump Station would be sufficient to adequately assess the effectiveness of its operation.

PART II

Area VIII Chloride Control Project

DESCRIPTION OF AREA VIII

Area VIII is located on the South Wichita River about 5 miles east of Guthrie, Texas, near the center of King County, Texas; and is about 4 miles north of the U.S. Highway 82. The terrain is typical for the area with steep valleys and rugged gypsum hills. Six separate springs in this area produce an average daily chloride load of 195 tons/day at approximately 2 cfs.

The selected plan for Area VIII calls for two low-flow collection dams on the South Wichita River. One dam (Bateman Dam), already completed at river mile 74.9, consists of a 5-foot high deflatable weir. The weir across the existing stream channel impounds a pool to facilitate pumping and deflates during periods of high flows. The brine is transported by the Bateman Pump Station via 23 miles of pipeline to Truscott Brine Lake for disposal. Truscott Brine Lake has an earthfill dam located at mile 3.6 on the Bluff Creek tributary to the North Wichita River. The lake has 116,200 acre-feet storage capacity. The second brine collection structure, if needed, would be located at river mile 61.5. According to design plans a pumphouse (Ross Pump Station) will be built to pump brine to Truscott Brine Lake, if warranted. The data used in the study by the panel was taken at three USGS gaging stations on the South Wichita River. One is located at Bateman immediately above the dam (Bateman Gage #07311782), one immediately downstream (Bateman Gage #0731183), and an additional gage 50.4 river miles downstream at the Highway 283 bridge (Benjamin Gage #07311800).

GEOHYDROLOGY

ORIGIN OF BRINES

During Permian time, the Texas Panhandle and western Oklahoma were in the central part of a broad shallow sea that covered much of the southwestern United States. Because of slow but continual sinking in the earth's crust beneath all parts of this inland sea, a thick sequence of red beds and evaporites (dolomite, gypsum, and salt) were deposited north of the major reefs and other carbonate deposits of West Texas.

Normal marine water entered basins in West Texas from the open ocean to the southwest, and after passing over the reefs it entered the shallow inland sea where evaporation of the water took place. Fresh water from land areas on the east and west mixed with the marine and saline waters; typically, sediments were deposited in the alluvial and near-shore environments, whereas the evaporites were deposited in the more central part of the inland sea, or the deeper part of the three major basins.

Permian shales, siltstones, and sandstones deposited in the region were derived by erosion of land areas on the east and west sides of the inland sea. Land areas on the east side of the sea included much of central and eastern Texas, eastern Oklahoma, and eastern Kansas; the principal source areas for sediments were probably the Texas and Oklahoma portions of the Ouachita Mountain chain and the northeastern Oklahoma and eastern Kansas portions of the broadly uplifted Ozark region.

Permian evaporites in the study region formed primarily as a result of evaporation of sea water. The concentration of dissolved solids in sea water was raised by evaporation until a series of "evaporite" rocks was precipitated on the sea floor. The typical cycle of evaporite precipitation from sea water begins with deposition of a carbonate (limestone or dolomite), followed by deposition of gypsum or anhydrite, and finally by deposition of salt (halite, NaCl).

GEOLOGY AND BRINE EMISSION ON THE SOUTH WICHITA RIVER

The South Wichita heads up in King County just west of Guthrie in the Whitehorse formation, then flows across a belt of Dog Creek shale to the source area where the river has cut through the Dog Creek shale exposing the Blaine formation at river level. Here the six major springs that contribute to the brine pollution are encountered, just upstream and downstream of the Bateman Ranch low-water crossing. These springs emit from the gypsums and dolomite of the Blaine formation. Several artesian aquifers, generally dolomites of the Blaine Elm Fork group, contribute to the poor quality ground water. The river flows through the steep valley and rugged gypsum hills of the Blaine and Flowerpot formations to a point just west of the Knox County line where the valley walls become less steep in a narrow belt of San Angelo sandstone. As the river begins its course across the Choza shale just west of Highway 283, the valleys widen and relief is less pronounced until its confluence with the North Fork in the eastern extremity of Knox County.

Ground water emitting to the surface by springs in the source areas is responsible for the natural brine pollution in the Wichita River system. The brine is primarily a sodium chloride type but does have a high sulfate concentration also. Tests on brines from the subsurface show a range from 5,000 to 30,000 Mg/L chlorides, and from 2,500 to 4,000 Mg/L sulfates. An exception to this was encountered in hole 4 on the South Wichita River which tested 169,000 Mg/L chlorides.

Stratigraphy, local structure, and topography control the occurrences of the salt springs. Several artesian aquifers, generally dolomites, transmit the water from a distant point of unknown origin to the points of emission, usually in the proximity of local structure and favorable topographic conditions. Brine emission from the springs accounts for the majority of the flows and chloride loads in the rivers. The deeply weathered rocks in the river courses provide the opportunity for some of the artesian aquifers to lose the formation water to the zone of weathering. This allows for dilution and recirculation of those waters with local ground water from the adjacent karst topography and surface waters.

The ground water in the flood plain alluvium is similar to those recirculated waters which migrate through the alluvium. Stratigraphy of the areas consists primarily of Permian shales and evaporites below the Whitehorse group and including the Dog Creek shale, the Blaine formation, the Flowerpot shale, the San Angelo sandstone, and the Choza formation. Total thickness of these formations is about 1,000 feet, with about 600 feet of the section represented by the Dog Creek shale, Blaine formation, and Flowerpot shale.

The principal artesian aquifers are found in the eight major dolomites of the Dog Creek shale and Blaine formation. These aquifers may be regional in extent since these beds occur over a great lateral extent and since preliminary studies in other areas in West Texas and Oklahoma indicate the same general phenomena along this belt. The origin of the brines is still problematical, but the pervious sandstones at the base of the Whitehorse group combined with sinks, dune sand, and alluvial pockets to the west of the Dog Creek-Blaine outcrop belt could serve as a topographically high catchment basin. The meteoric waters could then percolate downward through joints and fractures in the rock strata, eventually reaching a stratum or strata offering lateral transmissibility. Depending on the occurrence of halite, the water would take the salt into solution and due to the hydrostatic conditions the brine would then be forced laterally in the strata to its emergence in outcrop or to the deeply weathered subsurface zone. Since the investigations have been limited to the deeply weathered emission areas, no conclusive statements can be made as to the origin, other aquifer characteristics, or distinctions made between the aquifers in the deep subsurface.

In the source area, the principal springs emit from an interval below the Mangum dolomite in the upper Elm Fork group of the Blaine formation. Three principal aquifers are subsurface at this point, the Creta, Jester, and Gypsum Creek. Apparently most of these aquifers lose their flows to the weathered rock prior to outcropping farther downstream. No significant points of brine emission were noted downstream of the outcrop patterns of the dolomite, but alluvium sampling and the gage at Benjamin near Highway 263 shows some increase in total load, possibly from the Flowerpot-San Angelo belts.

In contrast to the ground water conditions in the Dog Creek-Blaine belt are the water table aquifers of the San Angelo and Choza formations. These formations are both relatively tight, and of the two, the Choza is the most impermeable. Therefore, where location and conditions allowed, this formation was exploited for pumping locations and reservoir siting. A few wells and wind mills in the area are developed in the San Angelo sandstone but are usually of low yield. Several seeps or low volume springs occur occasionally in the San Angelo. The quality varies from 100 to 3,000 Mg/L, but is generally considered of low quality even though isolated occurrences provide water for stock.

OPERATIONAL GUIDELINES FOR BATEMAN PUMP STATION

Truscott Brine Lake, Areas VIII and X, and the associated pipelines were designed for a fully automated operation. The three pumps at Bateman Pump Station of Area VIII were sized to pump an average of 5 cfs each for a total of 15 cfs needed to control the projected goal of removal of 85 percent of the chlorides. Switchgear has been installed which will automatically increase the pumping capacity from one pump to two and/or three pumps as the water level rises behind the inflatable weir in the river. When the water level rises to a height of 6 inches above the inflatable dam, the pump station will automatically shut down and the dam will deflate. Pumping is resumed after a visual inspection of the facilities has been conducted and the dam has been reinflated. A decreasing water level will cause a decreased pumping capacity in a reverse order. The pipeline and associated controls

were designed to carry the collected brines from Area VIII (both Bateman and Ross Pump Stations) as well as Area X. During the start-up of the Bateman Pump Station it became apparent that the design of the flow control valves located at the outfall of the pipeline would not allow efficient, automatic operation of these facilities as initially designed. To achieve this automated operation, a new control valve configuration was designed and is scheduled to be installed by August 1988. During the redesign and installation, Bateman Pump Station and the outflow control valves were calibrated to run automatically in only a two-pump mode. It was also discovered during the start-up period that the combined efficiencies of the pumps and pipeline are such that a one-pump operation will produce an average flow of 7 cfs while a two-pump operation will produce an average flow of 14 cfs and three pumps an average of 18 cfs. It will be shown later in that data that the two-pump average of 14 cfs collected 86 percent of the chlorides during the first year of operation. Upon delivery and installation of the new flow control valves at the pipeline outfall, the pump station and associated pipeline controls will be recalibrated to allow for a fully automated, three-pump operation.

DATA COLLECTION PROGRAM

NETWORK

A network of continuous-record streamflow and water-quality stations on streams in the Red River basin has been operated for many years by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and other Federal, State, and local agencies. Several of the stations are located in the drainage area of the South Wichita River (Area VIII of the Red River Chloride Control Project). Information on the location, drainage area, period of record, and types of instrumentation for stations applicable to this investigation are summarized in Table 4. Methods of data collection and computation of records by the Geological Survey are explained in a subsequent section. For an explanation of terms used in the following table and in the discussion of data collection and computation, the reader is referred to the section "Definition of Terms."

WATER-DISCHARGE RECORDS

Data obtained at a continuous-record streamflow station consist of a continuous record of water stage, individual measurements of water discharge throughout a range in stage, and notations regarding factors that may affect the relationship between stage and discharge. These data, supplemented by other information such as weather records, are used to compute daily discharge.

Continuous records of stage are obtained with analog or digital recorders. Instantaneous measurements of discharge are made with current meters by using methods adopted by the Geological Survey as a result of experience accumulated since 1880. In computing discharge records, stage—discharge relation curves are constructed by plotting results of individual discharge measurements against corresponding stages. These curves are then used to prepare rating tables that indicate the approximate discharge for any stage within the range of discharges measured. For extremes of discharge outside the range of current-meter measurements, the stage-discharge relation

TABLE 4
SUMMARY OF U.S. GEOLOGICAL SURVEY'S CONTINUOUS-RECORD STREAMFLOW AND
WATER-QUALITY PROGRAMS FOR AREA VIII SOUTH WICHITA RIVER

Location	tion	Drainage Area (sq. mi.)	Water-stage and water- quality instrumentation	Period of continuous water-discharge record	Period of daily or continuous water-quality record
Lat 33°27'29", County, 60 ft road, 3.9 mi 1 Creek, 6.1 mi 92.5 mi upstre	Lat 33°27'29", long 100°13'04", King County, 60 ft upstream from ranch road, 3.9 mi upstream from Willow Creek, 6.1 mi east of Guthrie, and 92.5 mi upstream from mouth.	222	Water-stage recorder 1952-54, Oct 70 Sep 76 (discon) Specific conductance recorder	1952-54, Oct 70 Sep 76 (discon)	Aug 70-Sep 76 (discont.)
Lat 33°37'19", King County, 1 from ranch roa upstream from 6.6 mi east of	South Wichita River Lat 33°37'19", long 100°12'31, at low flow dam near King County, 1.0 mi downstream Guthrie, Texas from ranch road crossing, 2.9 mi (Bateman) #07311782 lupstream from Willow Creek, 6.6 mi east of Guthrie and 91.5 mi upstream from mouth.	223	Water-stage recorder Oct 84 - Sep 85 May 87-current1 Specific conductance and water temp. recorder Data Collection Platform (telemetry)	Oct 84 - Sep 85 May 87-current Mar 85-current	Oct 84-current
Lat 33°37'19", King County, 1 from ranch ros upstream from east of Guthri upstream from	South Wichita River Lat 33°37'19", long 100°12'31, below low flow near King County, 1.1 mi downstream Guthrie, Texas from ranch road crossing, 2.8 mi (Bateman) #07311783) upstream from Willow Creek, 6.6 mi east of Guthrie, and 91.4 mi upstream from mouth.	223	Water-stage recorder Oct 85-current Specific conductance and water temp. recorder Data Collection	Oct 85-current	Oct 86-current year Oct 86-current
South Wichita River Lat 33°38'39", near Benjamin, Texas state highway (Bateman) #07311800 of Benjamin, a from mouth.	9", long 99°48'02", on ay 6 bridge, 4 mi north , and 41 mi upstream	4	Water-stage recorder Dec 59-current Specific conductance and water temp.	Dec 59-current 	Aug 68-current year (daily water-quality
		— M M	Data Collection Platform (telemetry)	Mar 85-current	Aug 68)

Water discharge records for station 07311782 since May 1987 represents flow pumped from the South Wichita River at the low flow dam and diverted by pipeline to Truscott Brine Lake. Flows are determined by the Corps of Engineers (recording flowmeter in pipeline) and records are furnished to the Geological Survey.

curves are extended by using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted opening measurements, and computation of flow over dams and weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stage (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by applying shifts (correction factors) based on individual discharge measurements and notes made by personnel who made the discharge measurements.

For periods of missing or grossly inaccurate gage-height record, the daily discharges are estimated from the recorded range in stage, previous and subsequent gage-height records, discharge measurements, weather records, and comparison with other station records from the same or nearby basins.

WATER-QUALITY RECORDS

Data obtained at a continuous-record water-quality station depend on the purpose of the station, the type of instrumentation, and the number and types of measurements and analyses. A comprehensive discussion of the various types of continuous-record water-quality stations operated by the Geological Survey is beyond the scope of this report. The following discussion is applicable to those stations in Area VIII of the South Wichita River where specific conductance is measured on daily samples or is recorded continuously by a digital conductivity monitor.

At daily sampling stations, water samples usually are collected at about the same time each day. During periods of rapidly changing flow, samples may be collected more frequently to determine the changes in water quality. At each station equipped with a digital conductivity monitor, specific conductance of the water is measured at hourly intervals. At each of these stations, at least six samples per year representing the range in specific conductance are collected and analyzed for specific conductance and the major dissolved-inorganic constituents and related properties.

Specific conductance is a measure of the ability of a water to conduct an electrical current and thus is related to the types and concentrations of major ions in solution. Consequently, specific conductance values can be used for approximating the concentrations of dissolved solids and the major inorganic ions dissolved in water. For each of the daily or digital conductivity monitoring stations, mean daily, monthly, and annual discharge-weighted concentrations and loads for selected dissolved chemical constituents including dissolved solids, chloride, and sulfate are computed using the daily records of water discharges and specific conductance and regression relationships between specific conductance and each of the chemical constituents.

For periods of missing or grossly inaccurate specific conductance record, daily values are estimated from recorded range in values, previous and subsequent records, regression relationships between specific conductance and

water discharge, and comparison with other nearby stations on the same stream.

SUMMARY OF FLOW AND WATER QUALITY RECORDS

The records on which this summary is based are for the period from May 1, 1987, through April 30, 1988. Locations of the Bateman Pump Station and the downstream gaging stations are shown on Figure 3. The complete daily records of the quantity and quality of the water diverted and the flow at stations downstream from the low-flow dam and near Benjamin are included in Appendix D and Appendix E. Monthly summaries are provided in Table 5, which includes the following:

- (1) Monthly records of the quantities of flow and the concentrations and loads of chloride in flows diverted by pumpage,
- (2) Monthly records of the quantities of flow and concentrations and loads of chloride in flow that passed downstream from the low-flow dam due to minor seepage under and around the dam, due to deflation of the dam when flows exceeded about 14 cfs and due to deflation of the dam during a 10-day period in January 1988 and a 7-day period in April 1988 when breaks were being repaired in the pipeline between the low-flow dam and Truscott Brine Lake. Hereafter, any or a combination of these flows that passed downstream is referred to as "spillage."
- (3) Monthly records of the quantities of flow and concentrations and loads of chloride at the station near Benjamin.

Flow records show that monthly diversions ranged from 5.2 cfs in January 1988 to 11 cfs in June 1987 and averaged 7.2 cfs. The records show also that spillage at the station downstream from the low-flow dam ranged from less than 0.1 cfs during four months to 53 cfs during the extremely high-flow month of May 1987 and averaged 5.3 cfs. A comparison of these records shows that approximately 58 percent (7.2 of 12.5 cfs) of the total flow originating upstream from the Bateman Pump Station was diverted.

Water-quality records show that chloride concentrations in the monthly diversions ranged from 6,100 Mg/L during the relatively high flow month of June 1987 to 11,000 Mg/L during five months and averaged about 9,800 Mg/L. Conversely, chloride concentrations in spillage at the station downstream from the low-flow dam ranged from 1,100 Mg/L during the high-flow month of May to 11,000 Mg/L during February and April 1988. These data indicate that the diversion of the saline low flows resulted in an average reduction of 4,420 Mg/L of chloride in the spillage at the site downstream from the dam.

Water-quality records show that chloride loads in the monthly diversions ranged from 145 tons/day in January 1988 to 223 tons/day in March 1988 and averaged 192 tons/day. The records show also that chloride loads in spillage downstream from the low-flow dam ranged from less than 2 tons/day during four months to 158 tons/day during the high-flow month of May.

TABLE 5

WATER DISCHARGES AND CHLORIDE CONCENTRATIONS AND LOADS FOR SELECTED SITES ON THE SOUTH WICHITA RIVER, TEXAS, MAY 1987 - APRIL 1988

	0731178	South v	07311782 South Wichita River	Ver	07311783	South	Wichita	River	07311800	Z 4+1102	Wichita Di	Divor
	at Low Flow (Diversions	at Low Flow Dam at (Diversions)	at Bateman,	ın, Texas	below Low Texas	Flow	Dam at Ba	niver Bateman	o/sireou near Benj			100
	Water discharge		S)	loride	Water discharge		solved	hloride	Water discharge			oride
Period	(crs)	(7/5W)	- 1	(tons) (tons/day)	(cts)	(Mg/L)	(tons)	(tons/day)	(cfs)	(Mg/L)	(tons) (t	(tons/day)
May 1987	5.7	10,000	4,800	155	53	1,100	4,900	158	249	920	19,070	613
June	11	6,100	5,400	180	3.0	5,100	1,300	40	108	1,700	14,806	200
July	8.0	8,600	5,800	187	2.8	5,800	1,400	45	32	2,800	7,357	239
August	7.1	10,000	6,100	197	94.	10,000	640	21	21	2,400	4,317	142
September	7.8	10,000	6,500	217	90.	8,800	46	1.5	8.2	2,600	1,754	09
October	6.9	11,000	6,200	200	90.	000'6	42	1.4	1.3	5,200	585	19
November	7.3	11,000	6,400	213	.05	9,400	36	1.2	1.1	2,900	542	18
December	7.7	10,000	009'9	213	.26	009'6	210	8.9	3.6	5,400	1,594	52
Jan. 1988	5.2	10,000	4,500	145	2.1	9,500	1,700	55	5.6	4,700	2,188	71
February	7.3	11,000	6,200	214	.15	11,000	120	4.1	3.0	5,700	1,320	45
March	7.4	11,000	006'9	223	.05	10,000	39	1.3	3.9	4,100	1,321	42
April	5.4	11,000	4,900	163	.81	11,000	730	24	4.0	3,800	1,215	40
May 1987- Apr 1988	7.2	9,770	70,300	192	5.35	2,100	11,163	30	37	1,550	26,067	153

Records for the station near Benjamin show that monthly flows ranged from 1.1 cfs in November 1987 to 249 cfs in May 1987 and averaged 37 cfs. The chloride concentration in these flows ranged from 920 Mg/L in May 1987 to 5,900 Mg/L in November 1987 and averaged 1,550 Mg/L. The monthly chloride loads ranged from 18 tons/day during November 1987 to 613 tons/day in May 1987 and averaged 153 tons/day.

PART III

ANALYSES AND CONCLUSIONS

ANALYSES AND CONCLUSIONS

In this part of the report, it is the purpose of the Panel to present Area VIII Chloride Control project data, and to use these data to determine the effectiveness of the project in accomplishing project objectives to improve water quality, as presented in "Supplemental Data to Arkansas - Red River Basin Chloride Control, Red River Basin, Design Memorandum No. 25, General Design, Phase I - Plan Formulation," Volume I, Department of the Army, Tulsa District, Corps of Engineers, Tulsa, Oklahoma, November 1980. The flow and chloride concentration data of Memorandum No. 25 were taken from Design Memorandum No. 3, U.S. Army Corps of Engineers, Tulsa District, Oklahoma, August 1972.

ACHIEVEMENT OBJECTIVES

As presented and explained in Memorandum No. 25, it is estimated that in the case of Area VIII, the Chloride Control project will intercept and divert 85 percent of the estimated 195 tons of chlorides that are entering the South Wichita River on the average day, upstream of the Ross Ranch pumping station site, by way of spring flows and seeps¹. It is specifically noted and emphasized by the Panel that in the economic reanalysis of 1980, no benefits were credited to the project until all project elements of the areas recommended for construction were completed. Following completion of project construction, which was estimated in the 1980 report to be 1990, the water quality benefits were phased in as Red River Water was used². The benefits were then allowed to grow as the use of the Red River water increased. Thus, it is the observation of the Panel, that the economic reanalysis of 1980 was based upon appropriate concepts, insofaras the benefits to water quality are concerned. Therefore, the task of the Panel can best be accomplished by evaluating physical parameters.

In its consideration of the 1980 reanalysis, the Panel concluded that the data currently being collected by the U.S. Geological Survey at the Bateman gages located upstream and downstream of the Bateman Pump Station, and the Benjamin gage located on the South Wichita River, approximately 50 river miles downstream of Bateman, were all that could be effectively used. The Panel further concluded that these data should be sufficient to allow proper evaluation of the effects of Area VIII operation. The Panel also determined that it would be unnecessary and outside the charge of the Panel to-review the benefit reanalysis to decide if project benefits are being realized, but that a qualitative analysis of water quality would be sufficient. Therefore, the remainder of the Panel's efforts were directed toward analysis of stream flows, pump diversions at the Bateman station, and water quality data in order to evaluate the effectiveness of the existing parts of Area VIII Chloride Control project in the accomplishment of the levels of water quality improvement that were forecast for these parts of the Chloride Control project³. The results of these analyses and comparison are presented below.

I"Design Memorandum No. 25, General Design, Phase I - Plan Formulation, "Department of the Army, Tulsa District, Corps of Engineers, Tulsa, Oklahoma, November 1980; page II-16.

²Ibid pages III-97, III-105, and III-106. ³Panel meeting minutes of October 28, 1987.

PERFORMANCE AT BATEMAN

In the following discussion, data in the first full year of operation (from May 1, 1987 through April 30, 1988) of the Bateman Pump Station are presented and analyzed. Table 6 shows a summary of flows and chloride concentrations in the South Wichita River upstream from the pump station. Flows measured at the site averaged 12.5 cfs while loads were 222 tons/day for this period. The spilled portion averaged 5.3 cfs and 30.5 tons/day and an average of 7.2 cfs with a load of 192 tons/day was diverted (see Table 5). Figures 4 and 5 show graphical presentations of the flow and chloride data presented in Table 5.

A comparison of these records shows that diversions of the more saline low flows resulted in an 86-percent reduction (192 of 222 tons/day) of the chloride load in the flow passing downstream from the Bateman Pump Station. This occurred even though an average of more than 138 tons/day of chloride was spilled during the two shutdowns. (During the test period two pipeline breaks occurred reducing the effectiveness of the pumping effort. The first occurred January 11, 1988 necessitating 10 days of down-time. The second break was on April 22, 1988 necessitating 7 days of down-time. In both cases the breaks were quickly repaired and pumping resumed.)

The average degree of control was less than expected due to high flows in May 1987 (this was the wettest month of record). Flow in May averaged 58.7 cfs with a load of 313 tons/day. Pumping caught 5.7 cfs (about 10 percent of the flow) and 155 tons/day (about half of the load). In comparison, pumping diverted 89 percent (7.4 of the average flow of 8.3 cfs), and 91 percent (195 of the average load of 214 tons/day) for the period June 1987 through April 1988.

Only one other period of record exists for the Bateman location other than the present period of record which began October 1, 1984. This was during the water years of 1971 through 1976 which appears to represent relatively "average" flow conditions based on observations of the 27 years of record available for the Benjamin gaging stations (see Table 7). Projected chloride diversions were simulated for the 1971-76 period by assuming the Bateman Pumping station and diversion were in operation, and the data are presented in Table 8. The simulated data is based on the assumption that the same operating strategy and similar breakdowns occurred during that period as during the actual period of operation between May 1, 1987 and April 30, 1988.

Important observations which can be made from reviewing the data in Table 8 are:

On averages approximately 87 percent or more of the chlorides occurring upstream of the Bateman Pump Stations can be removed. Average (and total) flow and chloride loads were considerably higher than average during the test period.

The efficiency of chloride removal in terms of percentages diverted is not very sensitive to the large variations in average annual flows and chloride loads.

TABLE 6

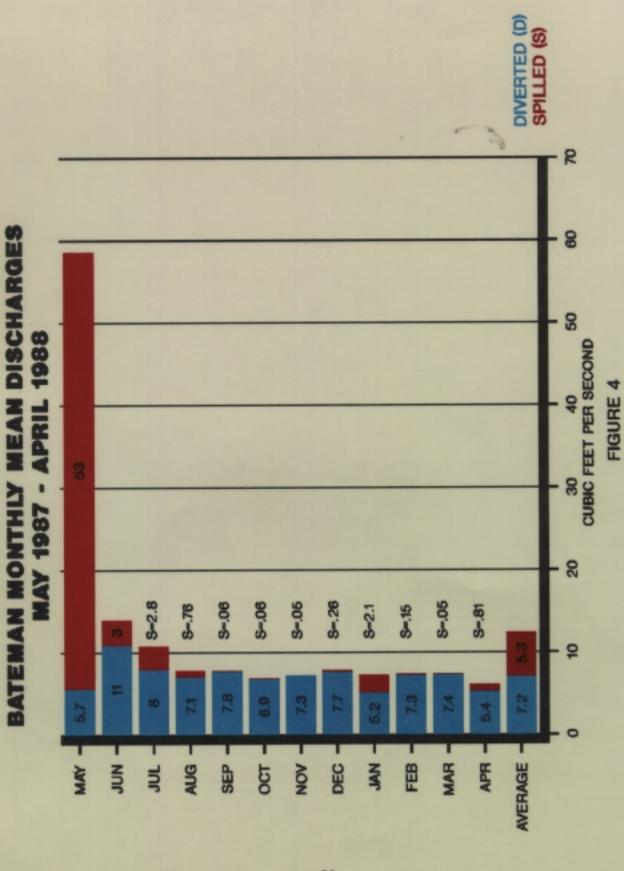
WATER FLOWS AND CHLORIDE CONCENTRATIONS AND LOADS FOR THE SOUTH WICHITA RIVER UPSTREAM FROM BATEMAN PUMP STATION

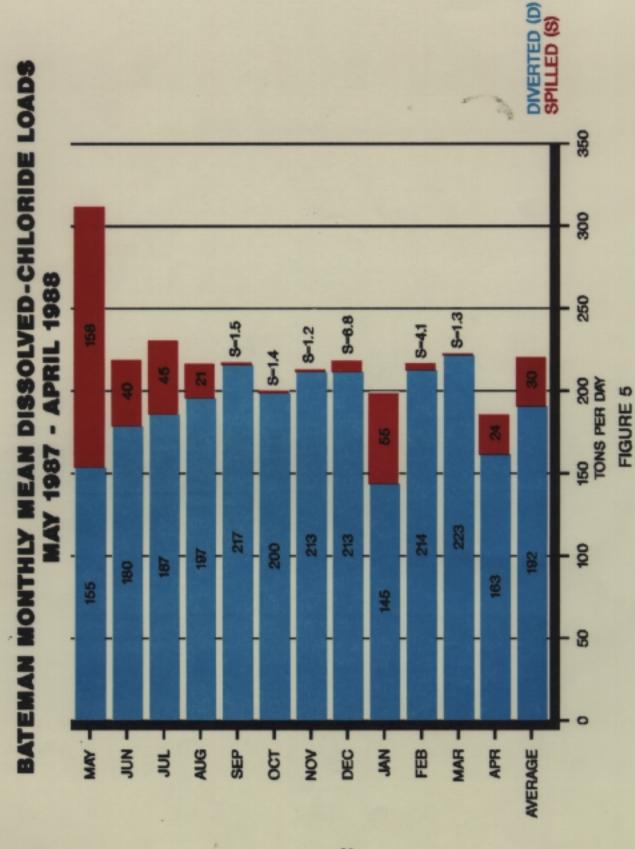
	Water discharge	Diss	olved chlo	ride
Period	(cfs)	(Mg/L)	(tons)	(tons/day)
May 1987	58.7	1,960	9,700	313
June	14.0	5,890	6,700	220
July	10.8	7,870	7,200	232
August	7.86	10,000	6,740	218
September	7.86	10,000	6,546	218
October	6.96	11,000	6,242	201
November	7.35	11,000	6,436	214
December	7.96	10,000	6,810	220
January 1988	7.30	9,860	6,200	200
February	7.45	11,000	6,320	218
March	7.45	11,000	6,939	224
April	6.21	11,000	5,630	187
May 1987- April 1988	12.5	6,520	81,463	222
October 1970- September 1976	5.25	10,700 <		154

TABLE 7

BENJAMIN MONTHLY FLOWS (DSF)

Annual		, 53	, 22	7,583	4,39	32,158	1,06	, 44	, 19	, 33	, 57	3,33	, 02	•	0,5	7,732	99,	4	, 14	, 91	,75	æ	, 93	4,719	3,91	32,002	88	 	14.213
Dec	2	325	^	7	4	303	0	195	547	155	662	373	184	288	285	273	163	97	157	419	235	290	664	1,277	9	1,281		 	366
Nov	612	832	412	1,008	501	373	177	309	1,323	133	581	930	607	542	1,412	449	193	313	300	262	241	214	1,331	556	643	1,952			602
Oct	150	633	42	9	7,575	722	119	116	4,545	206	•	2,526	229	1,342	318	2,726	237	235	S	248	881	113	20,347	211	5,747	13,376	42		2.420
Sep		4,333	, 18	,28	8,133	Q	514	25	7,515	272	832	4,777	e,	3,634	2,252	771	9	1,502	30	715	299	234	н	97	326	9	247		, 442
Aug		110	0		5,935	Ţ	293	387	821	6		, 34	167	99	1,296	1,140	176	•	1,083	108	1,242	Ø	7	373	116	1,105	629		, , ,
Jul		313	252	20	0	138	•	1,235	20	7	142	1,575	470	12	3,859	512	96	19	450	œ	11	678	9/	83	301	5,020	626		
Jun		,46	4	1,689	57	, 79	9,352	9	467	_	788	1,476	180	, 35	2,277	45	m	-	944	350	9	,76	5	162	œ	1,149	2		700
May		2	0	247	327	146	3,523	421	2,235		, 30	1,915	439	947	7,012		4,258	œ	,04	90'	2	96′	721	229	ō	1,814	,		
Apr		C	227	95	3	9	9	55	5	8	~	,73	-	45	509	2	4	σ	S	7	9	-	3	_	_	2	486	-	
Mar		S	8	5	4	279	9	2,347	22	S	10	196	7	S	~	9	ຕ	9	C	4	œ	505	က	412	œ	21	1,770	2	
Feb	1	141	192	453	3	C	6	657	7	6	2	~	2	C	9	4	സ	ന	S	9	4	_	383	9	~	228	1,651	98	
Jan		n	_	S	0	9	7	1,526	16	c	9	254	8	4	0	4	C	9	0	~	_	9	8		4	246	7	172	
Year	ص ان	1962	9	96	1965	ف	1961	96	96	~	97	6	\sim	~	~	9	97	~	6	98	00	00	8	1984	98	1986	1987	1988	


TABLE 8


SUMMARY OF AVERAGE DAILY VALUES OF FLOW AND ACTUAL AND PROJECTED CHLORIDE DATA AND PERCENTAGES DIVERTED AT BATEMAN PUMPING STATION

	Diverted	Spilled	Total		Percentage Diverted
Period	(tons/day)	(tons/day)	(tons/day)	(cfs)	(8)
Test Period	Actual				
May 87-Apr 88	192	30	222	12.5	86
Water Year	Projected*				
1985	105	5	110	3.6	95
1986	133	60	195	20.8	68
1971	107	17	124	6.3	86
1972	153	12	165	5.4	93
1973	165	16	181	5.4	91
1974	151	12	163	4.9	93
1975	132	18	150	5.5	89
1976	134	<u>16</u>	<u>150</u>	3.9	<u>89</u>
Avg. 71-76	<u>140</u>	<u>13</u>	<u>153</u>	5.25	<u>92</u>
Overall 9-yr. Average	141.3	20.9	162.2	< 7.6	87

^{*}Assuming same operational program and two breakdowns totaling 17 days as during test period. The average concentrations which was assumed to be spilled during water year 1971-1976 was computed to be approximately:

 $\frac{138 \text{ tons/day x 17 days}}{365 \text{ days/year}} \quad \text{X} \quad \frac{154 \text{ tons/day}}{222 \text{ tons/day}} \quad \text{\approx 5 tons/day}$

The two system breakdowns experienced during the test period (and assumed for each year in the simulation analysis) only caused an average 3- to 4-percent reduction in overall efficiency. The operational strategy used during the test period is an effective (suitable) strategy.

Both water year 1986 and the test period in 1987-88 were considerably wet and thus, flows were greater and carried more chlorides than normal although the concentrations were diluted by the high flows.

Examination of the quoted data confirms that the control system is operating better than predicted in design. The relative degree of control during the test period was somewhat reduced due to high flows in May of 1987 and by the two pipeline breaks. High flow periods will occur from time to time throughout the life of such a project but should not constitute a very large portion of the time as an average. Pipeline breaks will also occur during the operational phase, but the total down-time is not expected to rise in future years and may even drop as experience in repairs is accumulated. Considering these adjustments the expected level of control over the anticipated project life is estimated to be at least 87 percent as depicted in Table 8. This compares favorably to the forecast level of control used for design purposes (see Design Memorandum Nos. 3 and 25) which ranged from 83 to 85 percent.

PERFORMANCE AT BENJAMIN

Before measurable improvements of quality can be realized in impacted streams and lakes along the Red River, flushing of stored brines contained in alluvium waters must take place. A major concern addressed by the Chloride Control Feasibility Study was the estimated time required to flush these chloride loads. Significant flushing of brines was observed between the Bateman and Benjamin sites during the one-year operation indicating a much shorter time frame for this flushing action to occur than was originally envisioned.

The period of continuous concurrent streamflow and water-quality record for the South Wichita River at Bateman and near Benjamin is from October 1970 through September 1976. Flows near Benjamin averaged 36.2 cfs during this 6-year period and about 38.3 cfs during the 26-year period from October 1961 through September 1986. Distribution of flows for the two periods are very similar. Consequently, the water-quality records for both Bateman and Benjamin stations are considered to be representative of the long-term prepumping conditions.

During this 6-year period, chloride loads in flows near Benjamin averaged 210 tons/day. During the one-year period from May 1987 through April 1988 with pumping underway at Bateman, flows at Benjamin averaged 37 cfs and chloride loads averaged 153 tons/day.

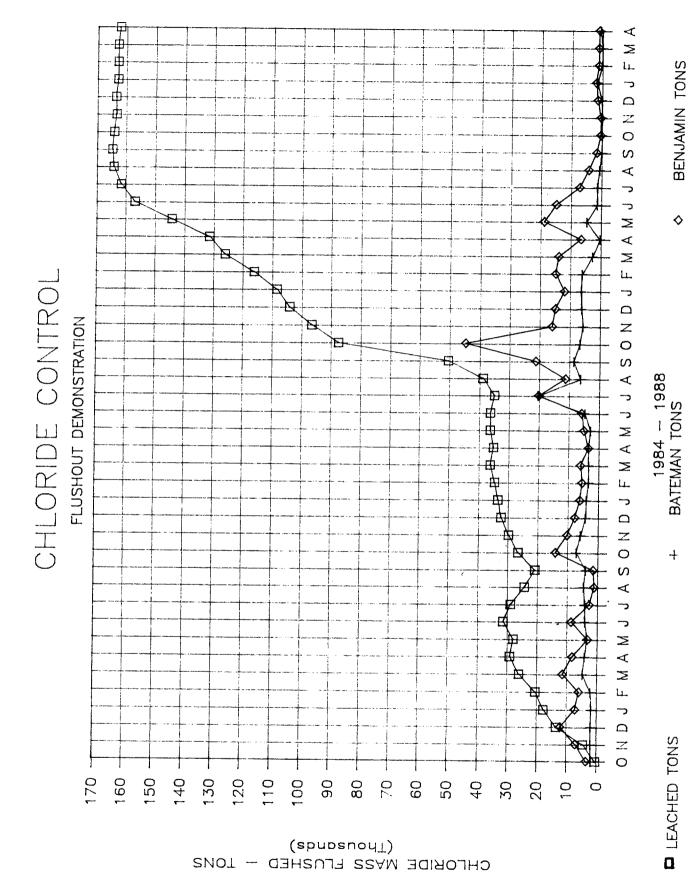
According to the Chloride Control Plan for Area VIII, pumpage of an average chloride load of 142 tons/day at Bateman would reduce the average chloride load at Benjamin to about 68 tons/day. However, pumpage of an average chloride load of 192 tons/day at Bateman during the one-year period reduced the average chloride load at Benjamin to only 153 tons/day. This

discrepancy is readily explainable. According to estimates by the U.S. Army Corps of Engineers, "Between the Bateman gage and Benjamin gage, an estimate 250,000 tons of chloride are dissolved in the pore water in alluvial silt deposits. Flushing of the stored brine in the alluvium must take place for definable improvements of quality parameters at Benjamin. Considerable flushing could occur in one normally wet spring."

Available data indicate that the much greater-than-average flows in May and June 1987 (a large part of which originated from flood runoff downstream from Bateman) resulted in significant flushing of chloride from the alluvium in the intervening reach between Bateman and Benjamin (see Appendix B and Tables 5, 6, and 7 and Figure 6).

Monthly chloride loads contributed by the intervening area in May and June 1987 averaged 455 and 460 tons/day as indicated in Table 9. Corresponding flow contributions in May and June averaged 196 and 105 cfs. In July and August, as the flows receded to 29.2 and 20.2 cfs, the monthly chloride loads decreased to 194 and 121 tons/day, respectively. Throughout the remainder of the period from September 1987 through April 1988, the monthly flows contributed by the intervening area were significantly less than the long-term average. Monthly loads during this period ranged from 16 to 58 tons/day. This was the result of the flushing of the chlorides in the alluvium between Bateman and Benjamin. This flushing lowered the chloride concentration and improved the quality of the alluvium water. Future water coming out of the alluvium will contain less chlorides than before since the highly chloride concentrated base flows will be diverted at Bateman and no longer contribute to the alluvium's chloride concentration during low flow periods.

The six-year flow for this area and the one-year flow after the onset of pumping agree remarkably well -- 31.4 and 31.6 cfs. However, the average chloride load contributed by this area after the onset of pumping was much larger than the six-year pre-pumping average -- 123 and 71 tons/day, respectively. The increasing load with no additional source is another indication of significant flushing of brine from the alluvium downstream from Bateman. After initial flushout, chloride loads at Benjamin during the period from September 1, 1987, to April 30, 1988, ranged from 18 to 71 tons/day and averaged 42 tons/day, about 26 tons less than the anticipated long-term value.

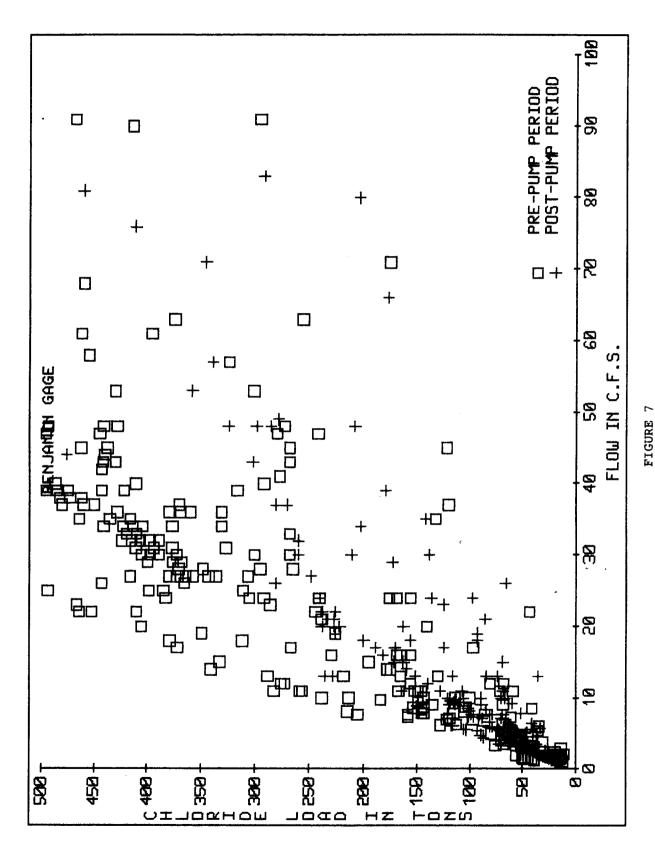

Figure 6 shows an estimate of the leaching progress between Bateman and Benjamin and is a plot of the data on Table 10. Flows during this eightmonth period averaged less than 4 cfs. After the initial flushing by high flows, the observed daily chloride loads at Benjamin were smaller for equivalent flows (see Figure 7).

The chloride control system effectiveness at Benjamin was demonstrated by the significant flushing action that was observed during the one-year operation. As the chloride load flushed from the alluvium continues to decline through the project life, a progressively greater degree of effectiveness of the Bateman Pump Station Operation will be prevalent.

TABLE 9

AVERAGE WATER DISCHARGES AND CHLORIDE CONCENTRATIONS AND LOADS
CONTRIBUTED BY INTERVENING AREA BETWEEN BATEMAN AND BENJAMIN

	Water discharge	Diss	olved chlor	ride
Period	(cfs)	(Mg/L)	(tons)	(tons/day)
May 1987	196	870	14,100	455
June	105	1,600	13,800	460
July	29.2	2,510	6,010	194
August	20.2	2,120	3,750	121
September	8.14	2,550	1,740	58
October	1.24	5,020	530	17
November	1.05	5,730	510	17
December	3.34	5,070	1,400	45
January 1988	3.50	1,820	500	16
February	2.85	5,420	1,190	41
March	3.85	4,020	1,279	41
April	3.19	1,970	480	_16
May 1987- April 1988	31.6	1,450	45,280	123
October 1970- September 1976	31.4	910	•	71



Estimate of the Leaching Progress Between Bateman and Benjamin

FIGURE 6

TABLE 10
ESTIMATE OF LEACHING BETWEEN BATEMAN AND BENJAMIN

		Tons	Tons	Intervening	Estimated	Accum
		Passing	Passing	Load	Leached	Leached
		Bateman	Benjamin	Tons	Tonnage	Load
0ct	84	1,900	3,640	1 000		
Nov		1,990		1,200	540	540
Dec		2,040	7,240	1,200	4,050	4,590
Jan		1,810	12,200	1,200	8,960	13,550
Feb		2,210	7,330	1,200	4,320	17,870
Mar			6,130	1,200	2,720	20,590
Apr		4,830	11,600	1,200	5,570	26,160
May		4,060	8,420	1,200	3,160	29,320
Jun		3,320	3,390	1,200	-1,130	28,190
		4,160	8,810	1,200	3,450	31,640
Jul		4,250	2,900	1,200	-2,550	29,090
Aug		4,760	1,340	1,200	-4,620	24,470
Sep		4,020	1,720	1,200	-3,500	20,970
0ct		7,270	14,200	1,200	5,730	26,700
Voľ		5,870	10,400	1,200	3,330	30,030
Dec		4,160	7,910	1,200	2,550	32,580
Jan		3,970	6,290	1,200	1,120	33,700
Feb		3,320	5,670	1,200	1,150	34,850
Mar		3,470	6,200	1,200	1,530	36,380
Apr		3,430	3,600	1,200	-1,030	35,350
4а у		2,810	5,170	1,200	1,160	36,510
Jun	86	4,860	6,030	1,200	-30	36,480
Jul	86	20,400	20,300	1,200	-1,300	35,180
Aug	86	6,390	11,500	1,200	3,910	39,090
Sep	86	8,710	21,400	1,200	11,490	50,580
Oct	86	6,700	45,000	1,200	37,100	87,680
vo		5,700	16,000	1,200	9,100	
Dec		6,300	15,000	1,200	·7,500	96,780
Jan		6,500	12,000	1,200		104,280
eb.		6,100	15,000		4,300	108,580
4a r		2,800	14,000	1,200	7,700	116,280
Apr		310	6,800	1,200	10,000	126,280
4ay		4,900	19,000	1,200	5,290	131,570
Jun		1,300		1,200	12,900	144,470
Jul			15,000	1,200	12,500	156,970
lug		1,400	7,400	1,200	4,800	161,770
sug Sep		640	4,400	1,200	2,560	164,330
_		46	1,800	1,200	554	164,884
)ct		42	590	1,200	-6 52	164,232
lov		36	540	1,200	-696	163,536
)ec		210	1,600	1,200	190	163,726
lan		1,700	2,200	1,200	-700	163,026
eb		120	1,300	1,200	-20	163,006
la r		39	1,300	1,200	61	163,067
pr	88	730	1,200	1,200	-730	162,337

Comparison Between Chloride Loads During Pre and Post Pump Periods at Benjamin

APPENDICES

APPENDIX A

LETTER AUTHORIZING PANEL

DEPARTMENT OF THE ARMY OFFICE OF THE ABBISTANT SECRETARY WASHINGTON, DC 20310-0103

1 4 AUG 1987

Professor Jack Keller
Department of Agricultural
and Irrigation Engineering
Utah State University
Logan, Utah 84322-4105

Dear Professor Keller:

I am very pleased to inform you that I am formally constituting and commissioning the Red River Chloride Control Project Evaluation Panel to assess the effectiveness of area VIII of the Red River Chloride Control project. The members of the panel are:

- > Dr. Herbert Grubb;
- > Professor Jack Keller;
- > Mr. Jack Kramer;
- > Mr. Jack Rawson; and
- > Mr. Glenn Sullivan.

You have agreed to serve as Chairman, and Mr. Rawson has agreed to serve as Vice Chairman.

I also have asked the Commander of the Southwestern Division of the Army Corps of Engineers to consult with you to arrange a meeting date in late September or October 1987 to initiate the activities of the panel. I would anticipate that the panel's first meeting would include a visit to area VIII and a first-hand viewing of the site and the works that are now in operation there.

Enclosed is information relating to the members of the panel, a copy of Section 1107 of Public Law 99-662, a charter to guide the panel's activities, and a paper containing useful background information. As indicated in the charter, the Commander of the Southwestern Division will designate a point of contact to assure that the panel receives the necessary technical and administrative support from the Corps. Major General Jerome B. Hilmes is the Commander, and his address is U.S. Army Engineer Division, Southwestern, 1114 Commerce Street, Dallas, Texas 75242-0216. Under separate cover you will receive a copy of the Corps recommendations regarding General Design Memorandum numbered 25 by the Director of Civil Works on behalf of the Chief of Engineers, dated August 8, 1977, referenced in Public Law 99-662.

I consider the assignment given to the panel to be an important one not only for the Red River Chloride Control project but for other projects of this type as well. I am sure that each of you will take your responsibilities most seriously and deliver your best professional judgment with regard to the correspondence between the actual performance of area VIII and that assumed in the Corps reanalysis of November 1980.

I extend to you my best wishes for an expeditious fulfillment of the charter given to you by Public Law 99-662.

Sincerely,

स्त्रवन्त्रको स्तित्वसम्बद्धाः ५००० म्यास्ट

John S. Doyle, Jr.
Acting Assistant Secretary of the Army
(Civil Works)

Enclosures

Similar letter sent to Jack Rawson, Jack Kramer, Herbert Grubb, and Glenn Sullivan

MEMBERS RED RIVER CHLORIDE CONTROL PROJECT EVALUATION PANEL

Professor Jack Keller - Chairman
Department of Agricultural
 and Irrigation Engineering
Utah State University
Logan, Utah 84322-4105
801-750-2785

Mr. Jack Rawson - Vice Chairman Water Resources Division United States Geological Survey 649 Federal Building 300 East 8th Street Austin, Texas 73701 512-482-5766

Dr. Herbert Grubb
Director of Planning
Texas Water Development Board
Capitol Station
Post Office Box 13231
Austin, Texas 78711-3231
512-463-7868

Mr. Jack Kramer
Texas Water Commission
Post Office Box 13087
Austin, Texas 78711
512-463-7791

Mr. Glenn Sullivan
Secretary of Natural Resources
Office of the Governor
State of Oklahoma
Oklahoma City, Oklahoma 73105
405-521-2413

ble. Except as specifically provided herein all transactions will be in accordance with existing laws and procedures.

SEC. 1107. RED RIVER CHLORIDE CONTROL.

(a) The first sentence of the paragraph under the center heading "ARKANSAS AND RED RIVERS" in section 203 of the Flood Control Act of 1966 is amended by striking out "\$46,400,000" and inserting in

lieu thereof "\$177,600,000"

(b) Section 201 of the Flood Control Act of 1970, as amended by section 153 of the Water Resources Development Act of 1976, is amended by striking out the last sentence under the heading "AR-KANSAS-RED RIVER BASIN" and inserting in lieu thereof the following: "Construction shall not be initiated on any element of such project involving the Arkansas River Basin until such element has been approved by the Secretary of the Army. The chloride control projects for the Red River Basin and the Arkansas River Basin shall be considered to be authorized as separate projects with sepa-

rate authority under section 203 of the Flood Control Act of 1966. (c) Construction of remaining elements of the project involving the Red River Basin shall be initiated in accordance with the recommendations regarding general design memorandum numbered 25 by the director of civil works on behalf of the Chief of Engineers, dated August 8, 1977. Such construction shall commence upon transmittal of a report to the Secretary and to the Committee on Environment and Public Works of the Senate and the Committee on Public Works and Transportation of the House of Representatives of a favorable finding of the effectiveness of the operation of area VIII, to be made by a panel consisting of representatives of the United States Geological Survey and the Texas Water Commission, a person selected hi the National Academy of Sciences, and two other qualified persons to be appointed by the Secretary with the concurrence of the governors of Texas and Oklahoma. The panel shall assess the improvement in water quality downstream of area VIII to determine its consistency with the water quality assumed in the development of project benefits in the economic manufacture of the project complete. project benefits in the economic reanalysis of the project completed in November 1980. Such report shall be submitted to the Secretary and to such committees no later than three years after the date arru VIII commences operation. Cost sharing for construction on the Red River Basin project initiated under this section shall be the same as the cost sharing for area VIII of the project.

BEC. HOR ST. JOHN'S RIVER BASIN, MAINE

(a) The Secretary is authorized to implement a program of research in order to demonstrate the empland irrigation and conservation techniques described in the report issued by the New England division engineer, dated May 1980, for the Saint John River Basin. Maine. The non-Federal share of the cost of such program shall be 35 percent.

(b) For the purposes of this section, there is authorized to be appropriated \$1,825,000 for fiscal year 1988, \$820,000 for fiscal year 1989, and \$785,000 for fiscal year 1990, such sums to remain avail-

able until expended.

SEC. 1109. PROHIBITION ON GREAT LAKES DIVERSIONS. (a) The Congress finds and declares that—

CHARTER OF THE RED RIVER CHLORIDE CONTROL PROJECT EVALUATION PANEL

- A. PANEL'S OFFICIAL DESIGNATION: Red Piver Chloride Control Project Evaluation Panel.
- B. OBJECTIVES AND SCOPE: As defined in Section 1107 of Public Law (P.L.) 99-662, the panel snall assess the improvement in water quality downstream of area VIII of the Red River Chloride Control project to determine its consistency with the water quality assumed in the development of the project benefits in the economic reanalysis of the project completed in November 1980. The panel shall submit a report of its findings to the Secretary of the Army and to the Committee on Environment and Public Works of the Senate and the Committee on Public Works and Transportation of the House of Representatives.
- C. <u>DURATION</u>: The panel has been established as the Red River Chloride Control Project Evaluation Panel under Section 1107 of P.L. 99-662. The panel will function until it submits a report of its findings to the Secretary of the Army and to the Committee on Environment and Public Works of the Senate and the Committee on Public Works and Transportation of the House of Representatives. As prescribed in P.L. 99-662, the report shall be submitted not later than three years after the date area VIII commenced operation. Area VIII commenced operation on May 11, 1987; therefore, the panel shall cease functioning not later than May 11, 1990.
- D. OFFICIAL TO WHOM PANEL REPORTS: The panel will report to the Secretary of the Army, through the Assistant Secretary of the Army for Civil Works.
- E. SPONSOR AND AGENCY PROVIDING SUPPORT: The United States Army Corps of Engineers will be the sponsor and will furnish secretarial, clerical, and other services as requested by the panel. The Commander, Southwestern Division, Corps of Engineers, will designate a point of contact for all matters relating to the activities of the panel. The Texas Water Commission also has agreed to provide administrative support upon request by the panel.
- F. <u>DUTIES</u>: The evaluation panel shall assess the improvement in water quality downstream of area VIII of the Red River Chloride Control project to determine its consistency with the water quality assumed in the development of project benefits in the economic reanalysis of the project completed in November 1980. The panel shall submit a report of its findings to the Secretary of the Army and to the congressional committees not later than May 11, 1990.
- G. FREQUENCY OF MEETINGS: The Commander, Southwestern Division, Corps of Engineers, after consulting with the Chairman, will convene the panel at Truscott Brine Lake or other appropriate designated location for an onsite review of the Red River Chloride Control project to be conducted by the Tulsa District of the Corps. Subsequent meetings will be convened by the Chairman at places designated by him to facilitate the work of the panel as necessary to fulfill the panel's stated objective.

H. TERMINATION DATE: The panel will terminate upon submittal of a report of its findings to the Secretary of the Army and the congressional committees not later than May 11, 1990.

I. COMPOSITION AND TERMS OF MEMBERSHIP:

- 1. The panel will consist of five members:
- a. Mr. Jack Rawson, representing the United States Geological Survey;
 - b. Mr. Jack Kramer, representing the Texas Water Commission;
- c. Professor Jack Keller, National Academy of Engineering, selected by the Acting Assistant Secretary of the Army (Civil Works) from candidates suggested by the National Research Council;
- d. Mr. Glenn Sullivan, Secretary of Natural Resources for the State of Oklahoma; and
- e. Dr. Herbert Grubb, Director of Planning for the Texas Water Development Board.
- Mr. Sullivan and Dr. Grubb were selected by the Acting Assistant Secretary of the Army (Civil Works) upon the recommendation of the Governors of Oklahoma and Texas, respectively.
- 2. The Assistant Secretary of the Army has designated Professor Jack Keller as the Chairman and Mr. Jack Rawson as Vice Chairman.
- 3. The terms of office shall expire upon submittal of a report of the panel's findings to the Secretary of the Army and the congressional committees not later than May 11, 1990.
- 4. Panel members will not be compensated for their services. Upon their request to the Southwestern Division's point of contact, members may be reimbursed for travel expenses, subsistence, and accommodation as allowed by current regulations.

INFORMATION FOR THE RED RIVER CHLORIDE CONTROL PROJECT EVALUATION PANEL

SECTION 1107 OF P.L. 99-662

Section 1107 of P.L. 99-662 states that the construction of the remaining elements of the Red River Chloride project shall be initiated in accordance with the recommendations regarding general design memorandum numbered 25 by the Director of Civil Works on behalf of the Chief of Engineers, dated August 8, 1977. Such construction may commence upon transmittal of a report to the Secretary and to the Committee on Environment and Public Works of the Senate and the Committee on Public Works and Transportation of the House of Representatives of a favorable finding of the effectiveness of the operation of Area VIII, to be made by the panel. The report shall be submitted to the Secretary and to such committees no later than three years after the date Area VIII commences operation. Cost sharing for construction on the Red River Basin project initiated under this section shall be the same as the cost sharing for Area VIII of the project. The Area VIII project was dedicated on May 11, 1987.

WATER QUALITY DATA

The final determination of the requirements and data collection stations will be made by the panel. The effectiveness of the Bateman pump station will be evaluated by monitoring the quantity and quality of stream flows and brine water pumped. Stream flow quantity and quality will be monitored by existing USGS gages located immediately upstream and downstream of the Bateman pump station and at the Benjamin gage. The quantity and quality of water pumped will be monitored at the Bateman collection point (Guthrie gage). All data collected can be evaluated to determine pump station effectiveness.

In order to assist the panel in the evaluation of the effectiveness of the operation of Area VIII, three full record stations have been installed. These stations record flow and water quality data collected in the Wichita River basin which would be affected by the operation of Bateman Pump Station. These are Guthrie gage at the Bateman Pump Station, Benjamin gage located five miles north of Benjamin, Texas, on the State Highway 6 bridge across the Southfork of the Wichita River, and Maybelle gage immediately downstream of Lake Kemp on the Big Wichita River. Flows and loads captured by pumping will be defined using gage data and the Truscott pipeline flow meter. Remaining flows and loads are measured by the downstream gage at the low-flow dam. Control system effectiveness can be demonstrated by the monthly flows and loads passing downstream with the pumping plant in operation.

Data collected during the operation of the Bateman pump station can be used to evaluate the level of chloride control during the test period, predict the level of control during comparable stream flow periods, and predict the long term level of control. The level of control during the test period will be evaluated directly from data collected. Chloride control for comparable periods will be predicted using water flow and quality data from past records. Statistical data, past water quality and stream flow records, and information obtained during the test period can be used to predict the long term level of chloride control due to Bateman pump station operation.

Total load at the Benjamin gage is 210 tons per day (T/D) through the recorded period. With Bateman operating it is expected that approximately 68 T/D will remain. Between the Bateman gage and Benjamin gage an estimated 250,000 tons of chloride are dissolved in the pore water in alluvial silt deposits. Flushing of this stored brine in the alluvium must take place for definable improvement of quality parameters at Benjamin to take place. Flushing could occur in one normally wet spring. Preparation of a report should be possible shortly after the collection period ends. A period of 18 months would be required to show load control at Benjamin gage with a greater than 50 percent chance of normal flow conditions.

Maybelle gage, located immediately below Lake Kemp, would not show an improvement in water quality parameters until initial flushing of the upstream channel and flushing of the alluvial storage mentioned in paragraph 3-03 has occurred. Stored waters in Lake Kemp will delay the effects of Bateman's load removal. Normal load at Maybelle gage has been 450 T/D over the period of record. The expected load after the full effect of Bateman would be 308 T/D due to other defined and undefined sources. Time is necessary to collect sufficient data to confidently show the estimated load reduction is occurring since the contrasts of before and after are less sharp, and the flushing must take place. For this report the data collected at Maybelle gage will probably not be used as no less than five years could elapse before the expected control could confidently be expected and demonstrated with Bateman as the only control point.

ECONOMIC REANALYSIS AND ASSUMPTIONS

The following information described in subsequent paragraphs is taken from Design Memorandum No. 25, dated November 1980 and discusses the economic reanalysis and assumptions.

The improvement of water quality in the Red River Basin would result in major benefits to the municipal and industrial user and to the agricultural user. The concepts, methodologies and procedures used in the evaluation are discussed in the Economic Reanalysis Summary section.

The municipal and industrial benefits are measured as water quality benefits, water supply benefits, or induced benefits. Water quality benefits are calculated when Red River water is used with or without the project. The benefit is a measure of the quality cost of water (either the cost of treatment to acceptable standard or the damage cost as a result of no treatment) without the project compared to with the project. The water supply benefit is calculated if Red River water is used only with the project and is the value of the least costly alternative with the project. Induced benefits result when more water is used with the project than without.

Net agricultural benefits are estimated as the average annual value of the difference in net crop returns with the project as compared with net crop returns without the project. It is necessary to project the type and amount of the various crops expected to be grown over the 100-year period with and without the project. The basic assumption behind the forecast of cropping patterns with and without the project is that they will be based on providing the maximum possible net revenue to the farmer. The combination of crops which will provide the maximum possible net revenue is the optimal crop mix. An optimal crop mix is estimated for each reach, with irrigable land (acreages of each soil type) and irrigation water as resource constraints. Differences in net revenues occur primarily from the higher yields resulting from increased irrigation with water of improved quality.

APPENDIX B

SOUTH WICHITA RIVER NEAR BENJAMIN, TEXAS MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1970 TO SEPTEMBER 1976

								-	
	MONTHLY AND ANNUAL MEANS AND	D ANNUAL M		LOADS FOR OCTOBER 1970 TO SEPTEMBER 1971	TOBER 1970	TO SEPTENBE	R 1971		-
		SPECIFIC	9.0						
***************************************		רטאחתרו	-210	-SIA	-S10	-S10	-S10	DIS-	
	PISCHARGE	ANTE	SOLVED	SOLVED SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	HAYDNESS
HONTH YEAR	(CFS-DAYS)	MHOS	(NG/L)	CTONS	(H6/L)	(TONS)	CMG/L)	(TONS)	(46/1)
0CT. 1970	206	22100	15000	8400	7300	4100	2300	1300	3100
0791 - YON	133	37000	25000	9100.	13000	4600	3200	1100	4700
0EC- 1970	155	35600	24000	10000	12000	5100	3200	1300	4500
JAN. 1971	162	35000	24000	11000	12000	5300	3200	1400	, 6000,
FCB. 1971	129	35400	24000	8500	12000	4300	3200	1100	005
HAR. 1971	108	39200	27000	7800	14000	000	3200	920	4 3 0 0
APR. 1971	116	32800	22000	7000	11000	3600	2800	688	4200
HAY 1971	4306	1990	1400	16000	590	0099	300	3500	340
JUNE 1971	788	9850	6800	14000	3000	0019	1400	2900	1500
JULY 1971	142	5560	3900	1500	1700	630	830	328	360
AUG. 1971	2271	5690	3900	24000	1700	10000	870	5300	990
SEPT 1971	832	12700 .	8800	20000	3900	9900	1 700	3800	2100
TOTAL	9348	:	•	14000	•	61000	•	24000	:
WTD.AVG.	56	1900	5400		2500	:	950	:	1200

PROVISIONAL Subject to Revision

	***************************************	COCCIETO							
• • • • • • • • • • • • • • • • • • • •		CONDUCT-	-SIQ	DIS-	-810	-810	018-	n16.	
	DISCHARGE	ANCE	SOLVED.	SOL VED	SOLVED	SOLVED	SOLVED	SOLVED	HAADNESS
MONTH YEAR	(CFS-DAYS)	MH0S)	(HG/L)	(TONS)	CHG/L1	(TONS)	(HG/L)	(TONS)	(CA+HG)
1971	2478	6770	4700	31000	2000	14000	1 000	6700	1200
NOV. 1971	80:	20300	14000	22000	6400.	10000	2500	3900	3100
DEC. 1971	662	17400	12000	22000	5500	9800	2200	4 0 0 0	2700
JAN. 1972	254	22900	16000	11000	7400	5100	2700	1 8 00	3100
FEB - 1972	225	27100	19000	11000	8900	5400	2900	1800	3900
HAR. 1972	196	32400	22000	12000	11000	5800	3100	1600	4100
APR - 1972	4736	2300	1600	2000	690	8800	340	4300	390
1972	1915	4740	3300	17000	1400	7300	700	3600	910
JUNE 1972	1476	6510	4500	18000	1900	7700	096	3800	1100
JULY 1972	1575	4 960	3400	15000	1500	6300	740	3100	950
AUG. 1972	1316	3820	2600	31000	1100	13000	009	7000.	680
SEPT 1972	4777	2940	2000	26000	860	11000	450	5800	510
TOTAL	23222	•	•	240000	•	100000.	4	48000	:
WTD.AVG.	63	2440	3800	•	1700	:	760	•	300
			D 4 d	IVOISIAO	A T.		-		
	•		Sul	Subject to Revision	a c				
			-	,					
		~							

		SPECIFIC CONDUCT-	DIS-	018-	-810	DIS-	-510	0.15	
***************************************		ANCE	SOLVED	SOLVED	SOL VED	SOLVED	SOLVED	SOLVED	HARDNESS
HONTH YEAR	(CFS-DAYS)	NHOS	CHG/L)	(TONS)	CHLORIOE (MG/L)	CHLORIDE (TONS)	SULFATE (MG/L)	CTONS)	(CA, MG)
0CT. 1972	2526	4460	3100	21000	1300	9100	650	4 4 00	760
NOV. 1972	93.0	11400	7900	20000	3500	0 0 2 9	1600	0000	1 3 0 0
DEC. 1972	373	20500	14000	14000	6500	6600	2500	2500	3200
JAN. 1973	585	15800	11000	17000	4900	7700	2100	3300	2500
FEB. 1973	677	15300	11000	19000	4700	9606	2100	3800	2308
HAR. 1973	1972	8770	6100	32000	2600	1,000	1300	0069	1500.
APR. 1973	1613	9630	6700	29000	2900	13000	1400	6100	1500
HAY 1973	439	18800	13000	15000	5900	7000	2400	2800	2360
JUNE 1973	200	21400	15000	8000	0069	3700	2600	1400	3300
JULY 1973	470	5560	3800	4900	1700	2100	820	1000	950
AUG. 1973	167	9120	6 30 0	2800	2800	1300	1200	550	1500
SEPT 1973	1905	5010	3500	18000	1500	7800	700	3600	930
TOTAL	11856	•	•	200000		89000	:	00000	:
WID.AVG.	32	91.10	0023	•	6	•	•	;	

PROVISTONAL Subject to Revision

DISCHARGE CFS-DAYS)					_ STO	-		
		SOLVED	SOL VED	SOLVED	SOLVED	SOLVED	SOLVED	HARDNESS
	MHOS	(HG/L)	(TONS)	CHG/L)	(TONS)	(HG/L)	(rons)	(1/9k)
OCT 1973 229	21100	15000	0006	6800	4200	2400	1500	3100
1973 607	13300	9200	15000	4200	0069	1600	2700	2000
1973	29000	20000	9900	9700	4800	3000	1500	4100
	31300	21000	8400 %	11000	4100	3100	1200	4300
1974	34600	24000	8300	12000	4200	3200	1100	4500
1974	35800	25000	10000	12000	2000	3200	1300	4500
APR. 1974	10900	7500	9200	3600	1500	1100	1 4 00	1500
1974	8020	5500	14000	2400	6300	1100,	2900	1300
N	4560	3200	20000	1300	8600	690	4400	190
1974	19900	14000	430	6300	200	2500	7.8	3100
99 +161	5430	3800	670	1600	280	830	150	950
SEPT 1974 3634	3300.	2300	22000	960	9400	520	5100	590
8915	•	•	13000	•	58000	•	23000	•
WTD.AVG.	1690	5300	•	2400	•	970	•	1200
		44	ROVISIONAL	CAE.				

i	•
1	×
	1.1
i	TEX.
ļ	_
1	3
	2
,	7
:	=
:	=
į	ž
ì	ü
Į	•
۱	
1	Œ
:	•
:	쁘
i	Z
1	_
i	₹.
•	ä
ì	=
٠	~
l	_
l	•
ļ	_
į	_
ŀ	×
ļ	·
!	=
١	-
l	_
;	=
÷	5
i	ō
ŧ	SOUTH MICHITA RIVER NEAR BENJAMIN, T
ı	
ı	
ı	
!	
ĺ	
ı	
l	
l	_
1	ā
i	31 180
i	-
,	-
	~

•

MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1974 TO SEPTEMBER 1975

	SPECIFIC CONDUCT -	-S10	018-	-\$10	-\$10	-S10	-510	
DISCHARGE		SOL VED SOL IDS	SOL VED.	SOLVED	SOLVED	SOLVED	SOLVED	HAYDNESS
(CFS-DAYS)		(NG /L)	(TONS)	(1/9)	(TONS)	(HG/L)	(TONS)	(1/94)
1342	8550	5900	21000	2600	9400	1200	4300	1400
545	16800	12000	17000	5200	7700	2200	3200	2700
288	25700	18000	14000	8400	6500	2900	2200	3700
301	24700	17000	14000	8100	6500	2800	2300	3500
762	11900	8200	17000	3600	7400	1600	3400	2000
313	23500	16000	14000	7600	0049	2700	2300	3500
509	12800	5800	12000	4000	5500	1600	2300	2900
7012	3130	2200	41000	910	17000	200	9400	560
2277	0699	4800	29000	2100	13000	1000	6300	1200
3859	4630	3200	33000	1400	11000	710	7400	910
1296	7840	5400	19000	2400	9300	1100	3900	1300
2252	. 0665	4100	25000	1800.	11000	900	5500	. 1000
20753	•		260000	•	110000	•	52009	•
57	6630	46.00	•		•			

-PROVISIONAL Subject to Revision

		SPECIFIC CONDUCT -	-810	-S10	DIS-	-810	-SIG	-810	
	DISCHARGE	ANCE	SOLVED	SOL VED	SOL VED CHLORIDE	SOLVEO	SOLVED	SOLVED	HAADNESS
HONTH YEAR	(CFS-DAYS)	NHOS)	(HG/L)	(TONS)	(HG/L)	(TONS)	(HG/L)	(LONS)	(1/9k)
0CT 1975	318	20300	14000	12000	0049	5500	2500	2100	3100
NOV. 1975	1412	8450	5800	22000	2500	9700	1200	4600	1100
DEC. 1975	285	23900	16000	13000	7700	5900	2800	2100	3500
JAN. 1976	246	24600	17000	11000	8000	5300	2800	1900	3500
FEB. 1976	245	28500	20000	13000	9400	6200	3000	2000	4000
HAR. 1976	269	29900	21000	15000	10000	7300	3000	2200	4200
APR . 1976	826	14800	10000	23000	4600	10000	1 900	4200	2300
HAY 1976	23.1	25700	18000	11000	8400	5300	2800	1800	3700
JUNE 1976	45	24500	17000	2000	8100.	970	2600	320	3500
JULY 1976	512	1540	5200	7200	2200.	3100	1100	1600	1300
AUG. 1976	1140	5370	3700	11000	1600	1900	830	2500	940
SEPT 1976	77.1	12900:	8900	19000	3900	8200	1800	3700	2100
TOTAL	6299	:		160000	•	73000		29000	•
WTD.AVG.	7.1	13600	9300	;	4300	:	1,700	:	2100

PROVISIONAL Subject to Revision

APPENDIX C

SOUTH WICHITA RIVER NEAR GUTHRIE, TEXAS MONTHLY AND ANNUAL MEANS AND LOADS FOR OCTOBER 1970 TO SEPTEMBER 1976

	SPECIFIC CONDUCT-	-S10	-S10	-S10	DIS-	-510	-SIO	
- 4		SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	HARDNESS
(CFS-DAYS)	MHOS	CMG/L)	(TONS)	CHLORIDE (MG/L)	CHLORIDE (TONS)	SULFATE (MG/L)	(TONS)	(CA, MG)
91	41700	29000	7200	15000	3600	3600	. 08-80	4700
-80	41100	29000	6500	14000	3200	3600	910	0054
88	42100	29000	0069	15000	3500	3600	860	4700
1.6	41900	29000	7600	15000	3800	3600	950	4700
61	40600	28000	0009	14000	3000	3600	760.	4500
06	43400	30000	7300	15000	3700	3700	900	4300
83	43800	31000	6800	15000	3400	3700	840	4300
96	41000	28000	7300	14000	3700	3600	920	45.00
18	37400	26000	6100	13000	3000	3300	780	4100
11	45300	32000	6100	16000	3100	3800	730	2100
1284	6670	9900	15000	2100	7300	680	2400	690
138	34500	24000	8800	12000	0011	3100	1200	3800
2287	:	•	92000	•	45000	•	12000	•
6.3	21600	15000	•	7400	:	1900	n J	2100

PROVISIONAL Subject to Revision

				•					
		SPECIFIC CONDUCT-	DIS-	DIS-	-510	-S10	-SIO	-\$10	
	TO TO THE BOOK	ANCE	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	HARDNESS (CA, MG)
HONTH YEAR	(CFS-DAYS)	HHOS	(1/9/1)	(TONS)	(H6/L)	(TONS)	(MG/L)	(TONS)	(46/1)
0CT- 1971	279	25300	17000	13000	8300	6200	2400.	1800	2700
1161 .VON	175	32300	22000	10000	11000	5100	3000	1400	3500
DEC. 1971	174	32600	22000	10000	11000	5100	3000	1400	3500
JAN 1972	154	35100	24000	10000	12000	4900	3200	1300	3900
FEB. 1972	125	37100	25000	8600	13000	4 300.	3300	1100	. 0014.
HAR. 1972	142	40300	28000	11000	14000	5400	3500	1400	4500
APR. 1972	120	40100	28000	0006	14000	4500	3500	1100	4500
HAY 1972	131	40700	28000	10000	14000	2000	3600	1300	4500
JUNE 1972	162	31900	22000	9500	11000	4700	2900	1300	3500
JULY 1972	127	43400	30000	10000	15000	5200	3700	1300	4300
AUG. 1972	226	26300	18000	11000	8900	5400	2400	1500	2300
SEPT 1972	168	30700	21000	9400	10000	0094	2900	1300	3300
TOTAL	1984	•	#	120000	•	61000.	•	16000	:
UTO AVO.	er In	33300	23000	•	11000	:	3000	:	3500

PROVISIONAL Subject to Revision

•

1118. 11 - A

(ء ال

D15- D15- D15- D15- S0LVED SOLVED SOL	CT - DIS- E SOLVED SOLV	
--	--	--

	_
•	SOUTH WICHITA RIVER NEAR GUTHRIE, TX. (DISC)
:	E, _
	UTHRI
	AR G
	R
:	RIVE
	HITA
1	i i i
1	SOUT
	7311780

•	•
	Ξ
:	5
i	1974
١	~
•	ū
	Œ
٠	z
1	w
i	_
,	٩
	S
,	_
•	ະ
	_
'	
	-
	•
i	_
1	
7	œ
•	۱.
	Ξ,
	_
ı	u
i	9
1	_
1	Ξ
i	9
	٠.
ı	
	2
	۲
	2
÷	Ξ
İ	_
:	
	2
	4
١	
٠	S
	z
;	•
į	9
İ	NNUAL MEANS AND LOADS FOR OCTOBER 1973 TO SEPTEMBER 1
١	_
į	Ξ
:	3
:	Ŧ
	Z
i	-
İ	
•	AUNA CAA
	Z
:	•
1	_
í	•
÷	Ξ
	Ξ
	Ξ
	á
;	M ON THE Y
	_
ł	
- 1	

		CONDUCT -	018-	-S10	DIS-	-S10	-810	-810	
		ANCE	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	HARDNESS
	DISCHARGE	CHICRO	SOL 10S	SOLIDS	CHLORIDE	CHLORIDE	SULFATE	SULFATE	(CA, MG)
HONTH YEAR	(CFS-DAYS)	MHDS	(HG/L)	(TONS)	(1/9H)	(LONS)	C MG/L3	(LONS)	(7/96)
0CT. 1973	180	38400	26000	13000	13000	6400	3400	1 7 00	4200
ноу. 1973	122	37700	26000	8600	13000	4300.	3400	1100	4200
DEC. 1973	130	37900	26000	9200	13000	4600	3400	1200	4200
JAN. 1974	133	39800	27000	0066	14000	4900	3500	1300	4400
FEB. 1974	116	40300	28000	8700	14000	0000	3500	1100	4500
MAR. 1974	140	41000	28000	11000	14000	5400	3600	1300	4 500
APR. 1974	134	42600	30 0 0 0	11000	15000	5400	3700	1300	1500
HAY 1974	152	40200	28000	11000	14000	5700	3500	1400	4500
JUNE 1974	305	21000	14000	12000	0069	5700	2000	1700	2200
JULY 1974	105	43700	31000	0098	15000	4400	3700	1100	4300
AUG. 1974	9.6	43200	30000	8000	15000	4000	3700	980	4 9 0 0
SEPT 1974	156	32200	22000	9300	11000	4600	2900	1200	3500
TOTAL	1771	•	*	120000	•	00009		15000	
HTD.AVG.	6.4	36300	25000	•	, 12000	•	3000	•	

PROVISIONAL Subject to Revision

	MONTHLY AN	HONTHLY AND ANNUAL MEANS A	EANS AND L	OADS FOR OCI	ND LOADS FOR OCTOBER 1974 TO SEPTEMBER 1975	TO SEPTEMBE	\$ 1975	· ·	
		SPECIFIC CONDUCT-	-\$10	-\$10	-810	-\$10	-810	-810	
	OTSCHARGE	ANCE	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED SUIFATE	SOLVED	HANDNESS
HONTH YEAR	(CFS-DATS)	MHOSI		(TONS)	(1/9/1)	(LONS)	(HG/L)	(TONS)	(1/94)
0CI. 1974	179	30600	21000	1 0000	10000	5000	2800	1400	3300
1974	140	33100	23000	8500	11000	4200	3100	1200	3500
DFC. 1974	142	35500	24000	9300	12000	4600	3200	1200	3900
JAN. 1975	130	37300	26000	0006	13000	4500	3400	1200	4100
FEB. 1975	112	36700	25000	7700	1 3000	3800	3300	1000	0004
HAR. 1975	199	39300	27000	11000	14000	5300	3500	1400	4100
APR. 1975	107	39900	28000	8000	14000	0004	3500	1000	4100
HAY 1975	141	17400	12000	14000	2600	0099	1700	2100	1900
JUNE 1975	134	27400	18000	0099	9000	3200	2600	960	2300
יחרג ופּזָב	180	26900	18000	8900	9000	0044	2500	1200	2300
1975	164	32800	22000	9900	11000	0064	3000	1400	3500
1975	100	33800	23000	8900	11000	0000	3100	1200	3700
	2018		•	110000	•	55000		15000	
4010	5	00000	00000	***	10000	:	2800		3200

PROVISIONAL Subject to Revision

.	:	SPECIFIC	-510	-510	010-	-810	010	-810	
							0 0 0	000 100	NA SOURCE
	DISCHARGE	CHICRO	SOLIOS	SOLIDS	CHLORIDE	CHLOR TOE	SULFATE	SULFATE	(CA.MG)
HONTH YEAR	(CFS-DAYS)	HHOS)	(T/ 9H)	(TONS)	(1/01/)	(TONS)	(1/91)	(LONS)	(1/9k)
0CT. 1975	127	36700	25000	8700	13000	4300	3300	1100	000
NOV. 1975	106	36900	25000	7400	13000	3700	3300	970	, A100 ,
UFC. 1975	116	38200	26000	8200	13000	4100	3400	1100	4200
JAN: 1976	96	39 60 0	28000	7200	14000	3600	3500	910	4100
FEB. 1976	8.83	40900	28000	6400	14000	3200	3600	800	4500
HAR. 1976	123	41900	29000	9700	15000	0064	3600	1200	4700
APR . 1976	139	39900	28000	10000	14000	5200	3500	1300	4400
9161 AAH	135	41700	29000	11000	15000	5300	3600	1300	4700
JUNE 1976	111	43900	31000	9200	15000	4600	3700	1100	4300
JULY 1976	194	39600	27000	11000	14000	5300	3500	1300	4400
AUG. 1976	145	29800	20000	8000	10000	3900	2700	1100	3200
SEPT_1976	131	35400.	24000	8600	12000	4300	3200	1100	3300
TOTAL	1460		•	110000		52000		13000	
246	4	2000	00000	;		•	6	;	

SOUTH WICHITA RIVER NEAR GUTHRIE, IX. (DISC)

7311780

PROVISIONAL Subject to Revision

APPENDIX D

SOUTH WICHITA RIVER AT LOW FLOW DAM NEAR GUTHRIE, TEXAS (STATION NOS. 7311782 AND 7311783)

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTHS

MAY 1987 - APR 1988

SOUTH WICHITA RIVER AT LOW FLOW DAM NR GUTHRIE. 7311782

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF MAY 1987

HARDNESS (CA, MG) (MG/L)		**	*	*	*	*	!	*	*	*	**	**	**	**	*	*	*	**	*	**	**	**	*	*	*	*	*	*	:	ł	1	770	*	3300
DIS- SOLVED SULFATE (TONS)		58	58	5B	6.7	51	ţ	24	58	26	55	55	58	43	59	26	61	59	44	54	08	49	17	20	65	78	83	11	!	;		0. 05	1400	*
DIS- SOLVED SULFATE (MG/L)		3000	3000	3000	3000	3000	ļ	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	2900	2900	2900	3160	2900	2000	2600	2200	2400	2500	:	•	1	670	*	2900
DIS- SOLVED CHLORIDE (TONS)		210	210	210	(d	183	1	87	203	202	200	199	211	154	215	204	220	236	153	187	280	231	59	167	217	247	563	38	!	ţ	-	9.06	4600	*
DIS SOLVED CHLORIDE (MG/L)		11000	11000	11000	11000	11000	i	11600	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	10000	10000	10000	11000	10000	8800	8500	7100	7760	8300	!	ŧ	i i	2300	*	10000
DIS- SOLVED SOLIDS (TONS)		426	426	426	49	371	!	177	423	404	405	403	428	312	435	414	447	478	312	382	571	468	120	343	445	512	556	78	!	\$ 1	!	0.1	9800	*
DIS- SOLVED SOLIDS (MG/L)		22000	22000	22000	22000	22000	1	23000	23000	23000	22000	22000	23000	22000	23000	23000	23000	22000	21000	20000	21000	~22000	21000	18000	18000	15000	15000	17000	:	1	;	2009	ķ. *	21000
SPECIFIC CONDUCT- ANGE (MICRO_ MHDS)		32700	32700	32700	32700	32700	f h	33400	33200	33200	32500	32800	33300	32900	33200	33500	33100	32900	30500	30100	30400	3280Ú	31100	26900	26200	22200	24000	25700	1	1	; [78ରଣ .	*	30500
DISCHARGE (CFS-DAYS)		7.1	7.1	7.1		6.2		6.9					7.0								10		2.1	7.1	4.6	13	en T				00.00		170	5.7
MONTH YEAR	MAY 1987		C	ı m	4	Ŋ	9	7	8	6	10	11	12	£13	14	15	16	17	18	19	50	21	22	53	40	25	56	7.01	58	53	30	31	TOTAL	WTD. AVG.

7311762 SOUTH WICHITA RIVER AT LOW FLOW DAM NR GUTHRIE.

DAILY AND MONTHL: MEANS AND LOADS FOR THE MONTH OF JUNE 1987

HARBNESS (GA, MG) (MG/L)		*	*	*	*	*	*	*	*	* *	**	*	*	*	**	*	**	**	**	*	*	*	*	*	* *	*	**	*	* *	**	* *	*	5000
DIS- SOLVED SULFATE (TONS)		14	20	33	61	40	99	99	71	73	59	16	4.	50	53	51	61	57	36	58	48	75	78	85	98	9	86	72	59	74	82	1800	*
DIS- SOLVED SULFATE (MO/L)		1400	1400	1500	1600	1800	1800	1900	1900	2000	2000	1800	1400	1400	1500	1600	1760	1600	1900	2000	2000	2100	2200	2300	2400	2400	2400	2500	2500	2500	2300	* *	2000
DIS- SOLVED CHLOKIDE (TONS)		04	Sel	102	178	192	199	202	217	224	184	47	121	144	154	149	182	170	120	178	148	235	24ë	261	280	194	281	235	195	244	. 264	5400	*
DIS- SOLVED CHLORIDE (MG/L)		3800	4000	4500	4900	5200	5400	5700	5900	6200	6400	5300	4103	4100	6400	4760	5000	5400	5700	6000	6400	6200	7100	7300	7800	0097	2900	6100	8200	6300	7600	*	0010
DIS- SOLVED SOLIDS (TONS)		85	122	216	375	403	418	422	452	400	283	98	256	304	326	313	385	356	250	371	307	489	513	541	578	402	579	485	401	501	546	11000	*
DIS- SOLVED SOLIDS (MG/L)		ë1∪0	8400	9400	10000	11000	11000	12000	12000	13000	13000	11000	870 <u>0</u>	<u> </u>	9 <u>600</u>	5950	11600	11000	12000	13000	13000	14000	15000	,15 5000	16000	16000	16000	1700.0	17000	17600	16000	*	13660
SPECIFIC CONDUCT- ANCE (MICRO_ MHDS)		12600	13000	14500	15700	16800	17400	18200	18900	19600	20100	16900	13400	13300	14200	15200	16200	17200	18100	19100	20100	21100	22100	00488	24200	23700	24500	24900	25200	25600	23600	~ ★	19200
DISCHAPGE (CPS-DAYS)			4.0	න න	14	14	14	E1	14	13	11	e e	11	13	ಐ	.	en m			11	-0 ∭	13	13	61		<u>ن</u> ن	13	11	១	11	13	335	11
MONTH YEAR	JUNE 1987	***	Cil	ო	4	ហ	9	7	83	O-	10	77	# T	13	4	15	15	17	18	19	50	121	CI CI	ଅଧ	24	ស	26	27	28	55	30	TOTAL	WTD. AVG.

7311782 SOUTH WICHITA RIVER AT LOW FLOW DAM NR GUTHRIE,

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF JULY 1987

HARDNESS (CA, MG) (MG/L)		**	*	*	*	*	**	ļ	*	ļ	**	**	‡	**	*	*	**	*	į	1	*	**	*	*	*	*	*	*	*	*	**	*	*	2800
DIS- SOLVED SULFATE (TONS)		22	08	69	6.9	84	27	i	1.4	i	53	91	47	51	94	53	74	54	1	1	37	69	79	68	54	57	92	82	74	28	58	58	1700	*
DIS- SOLVED SULFATE (MG/L)		2500	2500	2500	2600	2700	2700	i	2600	1	2800	2800	2900	2800	2700	2700	2700	2700	1	•	1700	1900	2200	2600	2700	2500	2700	2700	2700	2700	2800	2700	*	2600
DIS- SOLVED CHLORIDE (TONS)		187	29 1997	229	226	287	91	1	4.6	1	78	312	340	175	323	181	252	184	ļ ī	;	109	203	249	297	181	189	310	288	253	198	201	197	5800	*
DIS- SOLVED CHLORIDE (MG/L)		8100	8100	8200	8700	9300	9000	;	8900	i	9500	9400	10000	9700	9400	6300	9200	6300		1	5100	2800	0069	8500	9000	8500	9000	9100	0056	9400	9600	9400	*	8600
DIS- SOLVED SOLIDS (TONS)		385	539	471	464	587	187	ţ	4.6	!	160	929	693	357	661	371	517	376	!	!	229	436	516	611	371	389	635	289	518	405	411	404	12000	* *
DIS- SGLVED SGLIDS (MG/L)		17000	17000	17000	18000	19000	18000	!	18000	ļ į	19000	19000	21000	20000	19000	19000	19000	19000	1	ļ	11000	12000	14000	18000	18000	17000	180 00	19000	19000	19000	20000	19000	*	18000
SPECIFIC CONDUCT- ANCE (MICRO_ MHDS)		25000	25100	25400	26600	28200	27400	1	27200	i	28800	28700	30700	29300	28600	28400	28000	28400	;	;	16500	18400	21600	26200	27400	26093	27400	27800	28400	2860û	29000	28500	* *	26500
DISCHARGE (CFS-DAYS)		120		0	7.7	eri eri	in in		o o	00 0	# 60	12	ğ	6.7	E 1	7. 2	10	7.3	00.00	00 00	7.9	13	13	13	7.5	ල න	13	12	10	7.8	7. B		249	O.8
MONTH YEAR	JULY 1987	-	េល	ım	4	· 107	1-0	7	. 03	6	10	-	27	e	1 4	in a	16	17	18	19	50	21	22	23	24	25	26	27	28	56	30	31	TOTAL	WTD. AVG.

SOUTH WICHITA RIVER AT LOW FLOW DAM NR GUTHRIE.

DAILY AND MONTHLY NEANS AND LOADS FOR THE MONTH OF AUG. 1987

HARDNESE (CA, MG) (MG/L)			*	**	*	: 4	: 3	: 4	: 4	: 	į	:	*	**	**	**	*	**	**	*	*	**	*	**	*	**	*	**	**	*	**	*	*	*	3300
DIS- SGLVED SULFATE (TONS)		{ 1	28	99	04) .t	, n	0,4	3 6	} ¦	1	i	61	107	73	54	24	74	80	62	29	29	62	62	57	31	57	25	70	106	35	57	7	1700	*
DIS- SOLVED SULFATE (MG/L)		0	3,800	2800	2500	0000	3000	0000	9800	; ; ;	ŀ	1	2900	2900	2900	2900	3000	3500	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	2300	2700	2900	*	2900
DIS- SOLVED CHLORIDE (TONS)		Š	200	207	210	208	0.10	217	. 6		1	i i	214	378	256	193	84	263	284	221	221	221	221	220	203	110	202	90	250	376	318	195	219	6100	*
DIS- SOLVED CHLURIDE (MG/L)		0	0007	9800	10000	10000	10000	5800	9600	1	ŀ	1	10000	10000	100001	10000	11000	11000	10000	10000	10000	10000	10000	10000	11000	11000	11000	10000	11000	11000	9600	9300	10000	*	10000
DIS- SOLVED SOLIDS (TONS)		•	7 1	422	427	424	426	442	186	ţ	!	!	435	770	521	392	171	535	577	449	449	449	449	448	413	503 604	411	182	508	764	650	399	446	12000	* *
DIS SOLVED SOLIDS (MO/L)		0000	14000	2000M	21000	21000	21000	20000	20000	į	ļ	į	21000	21000	21000	21000	22000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	20005	19000	21000	港 東	21005
SPECIFIC CONDUCT- ANCE (MICRO-		0.0000) r r r d (24700	30500	31300	31500	29700	29100	į	1	i	31000	31000	31100	31300	31 8 00	31600	31500	31500	31500	31500	31500	31400	00915	31600	31600	31500	31600	31700	29200	28200	31300	*	30900
DISCHARGE (CFS-DAYS)			-	. · ·		7. 4				00.00				14		6.9						7. æ								Ü		3,0		219	7.1
MONTH YEAR	AUG. 1987	-	• ('	ന	4	ស	4	7	80	6	10	11	12	13	14	15	16	17	18	19	0		N 0	7) s N (A (n .	9 (N)	79	OD 1	6 -	30	31	TOTAL	WTD. AVG.

SOUTH WICHITA RIVER AT LOW FLOW DAM NR GUTHRIE, 7311782

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF SEPT 1987

HARDNESS (CA, MG) (MG/L)		*	**	**	**	*	*	*	**	*	*	*	*	*	*	*	*	*	**	*	*	*	*	**	*	**	*	*	*	*	**	* *	3400
DIS- SOLVED SULFATE (TONS)		79	79	69	57	55	54	52	57	74	62	62	59	63	79	95	69	62	62	62	29	63	29	29	79	62	62	49	59	57	22	1800	*
DIS- SOLVED SULFATE (MG/L)		3000	3000	3000	2900	2900	2800	3000	3000	3000	3000	3000	3000	2900	2900	2800	2900	2900	2700	2900	2300	2900	2900	3000	3000	3000	3000	3330	3000	3000	3000	* *	2900
DIS- SOLVED CHLORIDE (TONS)		220	221	223	199	192	188	185	201	563	221	221	209	222	219	329	243	219	218	217	218	219	219	220	221	221	222	176	210	202	201	9299	*
DIS- SOLVED CHLORIDE (MG/L)		10000	10000	11000	10000	10000	9800	10000	10000	10000	10000	10000	10000	10000	10000	9700	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	11000	11000	11000	11000	10000	* *	10000
DIS- SOLVED SOLIDS (TONS)		448	449	453	405	391	384	375	408	534	449	449	425	452	445	671	495	445	443	442	443	445	446	448	449	449	451	357	427	411	404	13000	*
DIS- SOLVED SOLIDS (MG/L)		21000	21000	21000	21000	20000	20003	21000	21000	21000	21000	21000	21000	21000	21000	20002	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	*	21000
SPECIFIC CONDUCT- ANGE (MICRO_		31400	31500	31700	30500	30200	29700	31500	31400	31500	31500	31500	31400	31300	31200	29500	31300	31200	31100	31000	31100	31200	31300	31400	31500	31500	31600	31000	31700	31600	31500	* *	31200
DISCHARGE (CFS-DAYS)					9.0											E1							7.8									233	7. B
MONTH VEAR	SEPT 1987		· (1	i m	4	'n	4	7	8	0-	10	11	12	13	14	15	16	17	18	19	20	21	25	23	24	ņ	56	27	28	56	30	TOTAL	WTD. AVG.

7311782 SOUTH WICHITA RIVER AT LOW FLOW DAM NR GUTHRIE,

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF OCT. 1987

HARDNESS (CA, MG) (MG/L)		:	*	*	*	*	*	*	**	**	**	**	**	**	**	**	*	‡	*	*	**	**	**	**	**	**	**	**	**	**	**	**	*	*	3400
DIS- SQLVED SULFATE (TONS)		ì	a i	25	56	26	26	26	56	58	09	09	09	09	09	09	28	61	61	37	о гі	29	83	57	52	56	56	26	26	56	56	57	57	1700	*
DIS- SOLVED SULFATE (MG/L)		0000	0000	3000	2900	2900	2900	2900	2900	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	*	3000
DIS- SOLVED CHLORIDE (TONS)			747	184	500	198	200	199	197	205	215	214	212	216	217	213	207	217	218	134	7.3	223	298	206	198	201	201	201	201	199	200	203	202	6200	*
DIS- SOLVED CHLORIDE (MG/L)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00001	10000	10000	10000	10000	10000	10000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	*	11000
DIS- SOLVED SOLIDS (TONS)		001	1 (۵/٦	406	404	406	405	400	417	438	435	431	438	440	433	420	440	443	271	15	452	509	417	402	408	404	40B	408	404	407	412	410	13000	*
DIS- SOLVED SOLIDS (MG/L)		21000	00010	41000	21000	21000	21000	21000	21000	22000	22000	22000	21000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22000	22600	* *	22000
SPECIFIC CONDUCT- ANGE (MICRO_ MHOS)		21500		00010	31300	31100	31300	31200	31000	31 8 00	32100	31900	31700	32200	00475	32000	32000	32100	32200	32200	32500	32600	32700	32600	32000	31400	32000	32100	32200	31900	32100	32100	32000	*	31900
DISCHARGE (CFS-DAYS)		7 0	. 4	o :	7.1	7.1	7.1	7.1	7.1					4.4				7.5			ტ (10		o- 0) ()				7.0		215	\$ ·
MONTH YEAR	GCT. 1987	-	ינ	J (ניז	4	ī	9	7	0 0 1	0 - (2;	1 1	W (0	7 4	† u	o :	0 !	17	10	6 1	9,	1 (74 (74 (77 6	7 :	ņ (Q !!	\ ()	10 to	<u> </u>	on on	31	TOTAL	WTD. AVG.

HARDNESS (MG/L) DIS-SOLVED SULFATE (TONS) SOUTH WICHITA R AT LOW FLOW DAM NR GUTHRIE, TX. DIS-SOLVED SULFATE (MG/L) DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF NOV. 1987 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 90000 SOLVED CHLORIDE (TONS) DIS-SOLVED CHLORIDE (MG/L) 11000 11000 11000 11000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 11000 00001 9800 11000 11000 11000 DIS-SOLVED SOLIDS (TONS) 416 335 403 407 DIS-SOLVED SOLIDS (MO/L) 22000 SPECIFIC CONDUCT-ANCE (MICRO MHOS) 7311782 32200 322400 322400 322400 322400 322400 322600 322600 322600 322600 322600 322600 322600 322600 32200 31200 31900 29700 DISCHARGE (CFS-DAYS) **444404000000000** VVVVVVVVVVVVVVVVVVVVVVVVVVV MONTH YEAR 1987

ZOZ.

3500

*

3000

*

11000

*

22000

32300

(C)

~

WTD. AVG

TOTAL

218

1800

6400

*

13000

403

SOUTH WICHITA $\tilde{\kappa}$ of LOW FLOW DAM MR GUTHRIE, TX.

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF DEC. 1987

HARDNESS (CA, MG) (MG/L)			*	*	**	*	* *	: 4	* *	* *	* *	* *	* *	*	*	* *	*	: * : *	**	**	**	*	**	*	*	**	**	**	**	**	**	1 A	: #		*	0000	200
DIS- SOLVED SULFATE (TONS)		i	40	52	55	500	0.00) · (ស ស	57	0.0	. G	09	9	47	48	9	. 6	58	58	59	77	57	57	57	59	85	35	Ci Ci	90	90	5	83 83		1900	1	t t
DIS- SOLVED SULFATE (MQ/L)		0000	0000	3000	3000	2500	3000	3000	0000	3000	0000	3000	3000	3000	3000	3000	3000	3000	2300	2900	2900	2900	2900	2900	2900	2400	2400	2900	2900	2500	2800	2800	2800		* *	2900	,
DIS- SOLVED CHLORIDE (TONS)		6.0	7 (176	195	193	240	231	194	203	214	211	213	215	168	171	340	223	205	205	207	270	200	200	200	207	298	113	7.5	308	312	.248	182		6600	* *	
DIS- SULVED CHUGRIDE (MG/L)		11000		0001	10000	10000	10000	11300	10000	11000	11000	11000	11000	11000	11000	11000	10000	100001	10000	10000	10001	10000	10000	10000	10000	10000	10000	100001	10000	9500	9600	9600	5800		*	10000	
DIS- SGLVED SGLIDS (TONS)		393	100	0 10	945	392	488	470	395	413	435	428	432	437	342	347	692	454	418	416	421	549	408	406	40¢	4	807	530	156	063	637	207	372		13000	* *	
D15~ SOLVED SOLIDS (MO/L)		21000	0.000		Z1000	21000	21000	21000	21000	0000M	2 20000	22000	22000	22000	21600	21000	21000	21000	21000	21000	21000	21000	21000	A1000	20010	0 5 0 5 0 5 N 0	\$0000 \$1000	K1000	21000	1,4000	20000	20000	20000		# #	21000	
SPECIFIC CONDUCT- ANCE (MICRO, MHOS)		31600	31500	0.446		31100	31400	31700	31300	31800	32100	32000	G1900	31800	31700	31600	31500	31400	00515 0150	31200	31100	31000	30000	30400	9.00 0.00 0.00	00000	00000			00 AB 0	274(00	27600	29600		*	31000	
DISCHARGE (CFS-DAYS)		D V	7.0) O	n mi	ייי סי	0 1				4					> 1				, (1						+ d		M C			o o		23B. 4	7.7	
Ŧ	DEC. 1987		വ	n	1 4	Իս	۷ ر	1 0	\ 0	n o)	0,1	11	`` C		7 U	O •	ō ŗ	\ \	ם י	7 0) r	1 01	M	4	in ca	50	7.6) or ()	ì	7	7	TOTAL	14.0	WTD. AVG.	

7311782 SOUTH WICHITA R AT LOW FLOW DAM NR GUTHRIE, TX.

1588
UAN.
ក់
MONTH
H
FICH
LOADS
AND
MEANS
DNTHLY
Σ
ON'S
DAILY

HARDNESS (CA, MG) (MG/L)		**	**	**	**	**	*	*	*	*	*	ţ	1	1	1	1	•	!	!	:	*	*	**	**	*	*	**	*	*	**	**	*	*	3300
DIS- SOLVED SULFATE (TONS)		77	ຄອ	61	20	20	47	93	62	86	13	!	!	!	1	!	!	;	-	1	35 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	59	59	74	96	59	52	52	2 6	26	26	ភូភ	1300	*
DIS- SOLVED SULFATE (MG/L)		2800	2900	2900	2900	2900	2900	2900	2400	2500	2800	1 1	1	1	1	1	!	<u> </u>	!	;	2900	2900	3000	3000	3000	2900	3000	3000	3000	3000	3000	3000	*	2900
DIS- SOLVED CHLORIDE (TONS)		266	184	213	243	175	163	325	218	131	4	i	1	1	!	1	;	!	!	1	68	20g	203	263	341	210	195	196	198	198	500	197	4500	* *
DIS- SOLVED CHLORIDE (MG/L)		0066	10000	10000	10000	100001	0066	10000	10000	9700	0096	!	!	1	}	1	1	ļ	1	•	10000	10000	10000	10000	11000	10000	10000	10000	11000	11000	11000	11000	*	10000
DIS- SOLVED SOLIDS (TONS)		543	374	435	496	357	332	693	444	267	96	1	!	i	!	1	!	!	1	1	181	424	425	534	694	428	346	398	402	402	406	400	9100	*
DIS- SGLVED SGLIDS (MG/L)		20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	i	!	Į.	!	!	1	!	1	;	21000	21000	21000	21000	21000	21000	21000	21000	22000	22000	22000	22000	7 †	21000
SPECIFIC CONDUCT- ANCE (MICRO_		29800	30200	30200	30200	30100	29900	30300	30100	29300	29100	1	1 1	!	1	1	1	;	1	1	31000	31300	31400	31400	31600	31200	31400	31500	31800	31800			*	30900
DISCHARGE (GFS-DAYS)		10		\$ K	٠.	in v		12	4 .00								00.0							6.9	12		6 9	\$ ·0	6 0	6.9	6.9	3 0	161.2	છ લ
MONTH YEAR	JAN. 1988	-	· 04	ı m	4	ın	9	7	00	0	10	11	12	13	14	15	16	17	18	19	20	21	25	53	24	25	56	27	28	29	30	31	TOTAL	WTD. AVG.

7311782 SOUTH WICHITA R AT LOW FLOW DAM NR GUTHRIE, TX.

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF FEB. 1988

HARDNESS (CA, MG) (MG/L)		*	*	**	*	**	**	*	*	*	**	**	**	**	*	**	**	**	**	1	**	**	*	*	**	*	*	*	**	*	1	k k	3500
DIS- SOLVED SULFATE (TONS)		64	69	62	79	29	61	61	09	45	61	72	09	9	09	61	77	63	99	1	50	29	ទាន	63	79	66	74	9	09	99	002	201	*
DIS- SULVED SULFATE (MG/L)		3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	2900	2500	3000	3000	3000	2900	3000	1	3100	3100	3100	3100	3100	3100	3100	3100	3000	3000	*	k k	3000
DIS- SOLVED CHLORIDE (TONS)		230	244	223	222	220	219	219	213	161	215	258	214	211	214	218	274	222	109	l l	72	223	199	227	287	356	267	217	216	216	000	0000	*
DIS- SOLVED CHLORIDE (MG/L)		11000	10000	11000	11000	11000	11000	11000	11000	10000	10000	11000	10000	10000	11000	11000	10000	10000	11000	i i	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	- ¥	k F	11000
DIS- SOLVED SOLIDS (TONS)		466	496	453	450	447	444	445	434	327	438	524	435	429	435	443	557	452	222	1	145	451	403	459	582	722	542	441	438	438	0000	13000	*
DIS- SOLVED SOLIDS (MG/L)		22000	21000	22000	22000	22000	22000	22000	21000	21000	21000	22000	21000	21000	21000	22000	21000	21000	22000	1	22000	23000	23000	23000	22000	22000	22000	22000	22000	22000		k k	22000
SPECIFIC CONDUCT- ANCE (MICRO_ MHOS)		32200	31500	32500	32300	32100	31500	32000	31600	31400	31500	31600	31300	31300	31700	32200	31400	31300	32700	:	33000	33200	33200	33300	33000	32800	32800	32900	32700	32700	* **	k	32200
DISCHARGE (CFS-DAYE)		7.9	8.6	7.6	7.6		7.6							7.5				7.9	9.7				6.6		9.6	12		7. a	7.3	7.3	0.00	4 14 14 1	e .K
MONTH YEAR	FEB. 1988	-	Ol	ღ	4	ស	40	7	8	٥	10	4 4	12	13	14	15	16	17	18	19	00	ល	CI CI	53	40	25	26	27	28	29	1014		WTD. AVG.

7311782 SOUTH WICHITA R AT LOW FLOW DAM NR GUTHRIE, TX.

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF MAR. 1988

HARDNESS (CA, MG) (MG/L)		*	*	*	**	*	* *	*.	*	*	*	*	**	*	*	*	**	*	**	*	*	**	**	**	**	*	**	**	**	**	*	* *	*	009E
DIS- SOLVED SULFATE (TONS)		4	79	77	88	87	26	53	64	23	54	74	59	28	59	59	29	09	09	09	09	29	09	49	79	29	61	29	79	29	29	29	1900	*
DIS- SOLVED SULFATE (MG/L)		3100	3100	3000	3000	2900	2900	2900	2900	2900	3000	3000	2900	3000	3100	3100	3100	3100	3100	3100	3100	3100	3200	3200	3200	3100	3200	3200	3200	3200	3200	3200	* *	3100
DIS- SOLVED CHLORIDE (TONS)		173	95	275	311	308	195	187	224	187	191	563	208	206	211	212	214	217	217	217	217	214	219	237	290	215	226	227	228	230	, 230	228	9069	*
DIS- SOLVED CHLORIDE (MG/L)		11000	11000	11000	10000	10000	10000	10000	10000	10000	11000	10000	10000	11000	11000	11000	11000	11000	11000	11000	11000	11000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	*	11000
DIS- SOLVED SOLIDS (TONS)		351	193	558	632	627	398	381	456	381	384	534	424	419	427	430	434	439	439	439	440	434	442	478	286	435	456	459	461	464	465	461	14000	*
018- 80LV&D 80LV&D (MG/L)		22000	22000		21000	21000	21000	21000	21000	21000	21600	21000	21600	22000	22000	22000	23000	23000	23000	23000	23000	23000	23000	24000	24000	23000	23000	24000	24000	24000	24000	24000	*	22000
SPECIFIC CONDUCT- ANCE (MICRO_ MHDS)		33000	32800		31400	31200	30700	31100	30B0¢	31100	31700	31400	30600	32200	32800	000EE	3330¢	33600	33600	33600	33700	33700	34300	32000	34900	34200	34400	34600	34700	34400	35000	34700	*	33000
DISCHARGE (CFS-DAYS)			о О		, ref	11	7.1	6.7	8. 1	4 6.7	67		7.6		7.1				7.1					4 7		0.0		_	7.2				230	7.4
MONTH YEAR	MAR. 1988		CI	n	4	5	4	7	80	0	10	11	12	13	14	13	16	17	18	19	50	21	22	ខា	4	25	56	27	28	53	30	31	TOTAL	WTD. AVG.

7311782

SOUTH WICHITA R AT LOW FLOW DAM NR GUTHRIE, TX. DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF APR. 1988

HARDNESS (CA, MG) (MG/L)			*	**	*	**	*	*	*	*	**	**	**	*	**	*	**	*	**	**	**	*	1	•	!	f	1	ŀ	1	*	**	* *	*		3600
DIS- SOLVED SULFATE (TONS)		į	7	63	79	79	79	29	79	49	47	25	57	57	74	99	62	79	79	62	. 29	ဓ	:	;	1	i	!	\$ 1	1	19	88	103	1400		*
DIS- SOLVED SOLFATE (MG/L)		7	3500	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	1	1	į	i	:	1	;	3100	3200	3200	*		3100
DIS- SOLVED CHLORIDE (TONS)		r C	467	530	227	226	225	225	224	179	172	91	208	208	267	237	224	224	223	223	223	107	1	1	1	!	!	!!	;	89	315	978	4900		*
DIS- SOLVED CHLORIDE (MG/L)		0000	1,000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	1	!	1	1	;	į	1	11000	12000	12000	*		11000
DIS- SOLVED SOLIDS (TONS)		077	7 1	463	460	457	456	456	454	362	348	184	421	421	541	480	454	454	453	453	451	217	ŧ i	† †	!	!	1	ţ	1	138	989	763	10000		* *
DIS- SOLVED SOLVED		00000		33000	23000	23600	23000	23000	23000	23000	23000	23600	23000	23000	23000	23000	22000	22000	22000	22000	22000	22000	1	1	:	!	i	1	i	23000	24000	24000	*		23000
SPECIFIC CONDUCT- ANCE (MICRO_		00000	000	00147	33800	33600	33500	33200	33400	33400	33200	33300	33200	33200	33100	33100	33000	33000	32900	32900	32800	32800	1	i	1	ł	1	!	!	34100	34500	34500	**	•	33200
DISCHARGE (CFS-DAYS)		6	1	4.7	7. 4	7.4	7.4	7.4		5.9	5.7			6. 0	\$.				7.5		7.5	3.6						09 0		oi oi	10	12	162.2		, 6.
MONTH YEAR	APR. 1988	•	• (NI I	m	4	ល	9	7	00	6	10	11	12	13	14	15	16	17	18	19	90	101	1 K	, n	하	25	56	27	58	59	90	TOTAL		WTD. AVG.

TOUTH WICHITA RIVER BELOW LOW FLOW DAM NR GUTHR DATEY AND MONTHE, NEARS AND LOADS FOR THE MONTH OF MAY 1987 7311783

HARDNESS (CA, MG) (MG/L)		*	*	*	**	*	* *	4*	*	*	*	**	**	**	**	*	*	*	*	*	*	*	**	*	*	**	*	*	110	340	069	910	*	360
DIS- SOLVED SULFATE (TONS)			0.0			o o	0.5		o	4.0	0.5	0.5	0.5		9.0			8 .0		0.7		9.0	9.0	42	4 3		8 0	651	368	449	101	99	1700	* *
DIS- SOLVED SULFATE (MG/L)		2800	2900	2400	2900	3000	2600	3000	3100	3100	3000	2900	3000	3000	3000	3300	3000	3000	2900	2800	2800	2900	2500	2300	2500	2500	2600	2200	130	604	720	1000	*	390
DIS- SOLVED CHLORIDE (TONS)		9 .0		G .	,	8 9.0	ට. ප	11	1.5	1.5	1.7	1.7		0 N						9		CI CI		135	142	ci ci		2050	920	1150	26 8	187	4900	*
BIS- SGLVED CHLÜR IDE (MGZL)		6986	10000	10000	10000	00001	980J	11000	11000	11000	11500	10000	11000	11000	11000	11500	10000	11000	10000	9500	9760	10000	8200	7500	6200	6300	8500	6800	330	1000	1900	2900	*	0011
DIS- SOLVED SOLIDS (TONS)		1.6	CI CI		13		1.6	22	Э. 1	о е	<u>က</u> က		e e	٠.	4.6	4. 6	4.6			S S		4. B	4.	280	293	6.0		4250	2000	2490	576	66E	1 0000	*
015- SOLVED SOLIDS (MG/L)		20000	21000	21000	21000	21000	20000	22600	23000	23000	22000	21000	21600	21000	21000	21000	21000	21000	21000	19000	20000	21000	17000	15000	17000	17000	18000	14000	720	2200	4100	5900	*	2300
SPECIFIC CONDUCT- ANCE (MICRO_ MHOS)		29700	30600	30900	30500	31400	29700	31500	34000	33100	32000	31300	31600	31600	31700	31600	31400	31700	30900	28900	29400	30800	25400	23300	25400	25700	26200	21300	1150	3530	6400	9 230	*	3630
DISCHARGE (CFS-DAYS)		0.03			0.04	0.03								0.02		80 O				0.1			Ξ.		٦.	0.1	0.1	112	1030	415	S.	មា	1649	53
MONTH YEAR	MAY 1987	4	U	n	4	ιD	•	7	œ	ው	10	11	12	13	14	15	16	17	18	19	90	21	ପା	ខា	40	in S	56	27	80	50	30	31	TOTAL	WTD. AVG.

7311783 SOUTH WICHITA PIVER BELOW LOW FLOW DAM NR GUTHR

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF JUNE 1987

HARDNESS (CA, MG) (MG/L)		;	‡k ; ∳k ;	k :	k 4	k 4	* #	: *	* *	*	*	**	*	*	**	**	*	*	*	**	*	**	**	**	**	**	**	*	*	*	*	*		1700
DIS- SOLVED SULFATE (TONS)		Ċ	, c	3 6	3 -	0	4	. c	i -i	1 10	89	48	56	8	56	12	ių P	ci	88	9.0	27		0.7			2.7	(N i		(m	(n)	1.5	420	! !	*
DIS- SOLVED SULFATE (MG/L)		000	1400	1500	1600	1700	1800	1900	2000	2000	2100	1600	1500	1500	1700	1800	1800	2000	2100	2200	2300	2300	2400	2500	2600	2400	2400	2400	2400	2300	2000	* *		1700
DIS- SOLVED CHLORIDE (TONS)		or ac	à	9 6	4. E	98.	14	0	3.7	4.6	210	140	75	5.4	78	36	18	ر ري	83	1. Ci	98			2. 9			ი	₩	4.1	ဓိ	4. 6	1300		* *
DIS- SOLVED CHLORIDE (MG/L)		3000	0060	4200	4700	5100	5400	5700	6000	6300	6500	4700	4300	4500	5100	5300	2500	0009	6000	6900	7200	7600	7900	8200	0098	7900	8000	B000	8000	7300	6300	*	i	5100
DIS- SOLVED SOLIDS (TONS)		189	185	204	102	75	53	13	7.8		438	295	158	4 (163	74	37	19		4. i	178	⊷ vi			6.7		0.8		8.4	61	5	2600	;	*
DIS- SOLVED SOLIDS (MG/L)		7500	8300	8900	0066	11600	11000	12000	13000	13000	14000	0066	9100	0044	00011	11000	12000	13000	14000	14000	00001	1,6000	16000	17000	18000	16000	17000	17000	16000	15000	13000	* *	500	00011
SPECIFIC CONDUCT- ANCE (MICRO MHDS)		11700	12800	13700	15300	16400	17200	18200	19100	19800		10300	14100	4 £ 3000	00004 00004	00401	00001	00861	1000	£1700	10000 10000	0000 C		00400	20400	24400	24800 0.8800	24800 00848	24700	7	19900	* *	11300	6000
DISCHARGE (CFS-DAYS)		⊕ ⊕		8 .B							'd +	11			k tr							j					1 (C)				9 3	91	e e	
r	JUNE 1987	-	ល	с	4 :	ጥ -	-0 1	<u> </u>	OD 0	• •) -	: CI	: E	4	15	2 -	7	9	<u>.</u>	` c	30	• () • ()	100) 4 (י טור	או כ ק	0 70) (°	0 0	, (C	9	TOTAL	WTD. AVG.	

7311783 SOUTH WICHITA RIVER BELOW LOW FLOW DAM NR GUTHR

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF JULY 1987

HARDNESS (CA, MG) (MG/L)	***********	1900
DIS- SOLVED SULFATE (TONS)	44 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	*
DIS- SGLVED SULFATE (MG/L)	# # # # # # # # # # # # # # # # # # #	1400
DIS- SOLVED CHLORIDE (TONS)	manganana 40 manganana 40 40 44 40 44 40 40	*
DIS- SULVED CHLORIDE (MG/L)	6460 6700 6700 8000 8500 8500 8500 8500 8500 8500 8	מסשמ
DIS- SOLVED SOLIDS (TONS)	C 4 4 4 4 6 6 6 6 7 4 4 6 6 6 6 6 7 6 6 6 7 6 6 6 7 7 7 8 7 7 7 7	je je
DIS- SOLVED SOLIDS (MG/L)	14000 14000 14000 17000 17000 18000 18000 18000 18000 18000 18000 18000 18000 12000 12000 12000 12000 12000 12000 12000 12000 12000 13000 17000 17000 18000 17000 18000 17000 18000	77704
SPECIFIC CONDUCT- ANCE (MICRO_ MHDS)	20800 21300 21300 21300 224800 224100 224200 224200 224200 113200 113200 114200 114200 114200 114200 114200 114200 114200 114200 125600 22600 22600 22600	, , ,
DISCHARGE (CFS-DAYS)	ш сососостина в на предосососось в и в сососососососососососососососососососо	
~ ^	•	
MONTH YEAR JULY 1987	111 112 113 114 116 117 118 119 119 119 119 119 119 119 119 119	

SOUTH WICHITA RIVER BELOW LOW FLOW DAM NR GUTHR 7311.783

DAILY AND MONTHL: MEANS AND LOADS FOR THE MONTH OF AUG. 1987

HARDNESS (CA, MG) (MG/L)		*	*	*	*	*	*	*	*	*	*	*	**	**	*	*	*	*	*	*	*	*	*	*	**	**	**	*	**	*	**	* *	*	3300
DIS- SOLVED SULFATE (TONS)		0.7	0.7	9.0		0.5				35	51	52	58	8		9.0		9 0	9.0	9.0		0.6			4 .0			بن م			9.0		180	*
DIS- SOLVED SULFATE (MG/L)		2700	2700	2800	2800	2800	2800	2800	2800	2800	2900	2900	2300	2400	3000	2900	2900	2900	2900	2900	2900	2900	2800	2800	2800	2800	2800	2000	2500	2500	2600	2000	 *	2900
DIS- SOLVED CHLORIDE (TONS)		OI Ci	က ni	∓ ci	1.6	1.6	1.8	1.6	1.5	110	181	184		ଫ ପା			લ તાં					<u>.</u> :		1. G			1.6	18	1 .	0 6	٠ دا	1.9	640	* *
DIS- SDLVED CHLORIDE (MG/L)		9100	9300	5006	9700	9800	9700	9600	9400	9900	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	9800	9800	9200	9800	9800	8700	8300	6300	6200	8800	*	10000
DIS- SOLVED SOLIDS (TONS)		4.5	4.6	4. G		ය ෆ්		လ က	3.1	다. 4년	368	374	204		S. S.	4.5	4.5	4.5	4.4	4. 13.	5.6					လ က်		37		4. U			1300	* *
DIS- SGLVED SGLIDS (MQ/L)		19000	19000	20000	20000	20000	20000	20000	19000	20000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	20000	20000	20000	20000	20000	20003	18000	17000	17000	18000	18000	**	21000
SPECIFIC CONDUCT- ANCE (MICRO_ MHDS)		27800	28400	29000	29500	29600	29500	29100	28700	30000	31000	31000	31000	30405	31500	30700	30400	30400	30400	30500	30630	30100	29700	29700	29400	29600	29600	26800	25700	25700	200	27000	** *	30500
DISCHARGE (CFS-DAYS)				0.08								6.6	9 e				BO .0		0. 0B									9.0	0.08		60.0	0	24	ສ ວັ
MONTH YEAR	AUG. 1987		(N	ო	4	Ŋ	4	7	00	0	10	11	12	13	14	15	16	17	18	19	90	21	Ci Ci	53	4	io Ci	96	27	98	55	90	31	TOTAL	WTD. AVG.

7311783 SOUTH WICHITA RIVER BELOW LOW FLOW DAM NR GUTHR

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF SEPT 1987

DIS- DIS- SGLVED SOLVED HARDNESS SULFATE SULFATE (CA,MG) (MG/L) (TONS) (MG/L)		2600 0.6 **	O	ó	9.0) io	Ö	o	Ö				2500 0.6 **	Ö	2500 0.4 **	2600 0.4 **			2500 0.4 **			2700 0.4 **						٠.		2700 0.4 **	2700 0.4 **	** 14 **	
DIS- SOLVED SI CHLORIDE SI (TONS) (1		1.9	1.7	6 -1				1.6	1. 4 20			1.5		_	1. 4	1. 4 2.	1.4						1.5						1.2 2)			94	
DIS- SOLVED CHLORIDE (MG/L)		8700	9200	8900	8100	8000	7700	8500	8700	9100	9400	9400	8800	9000	8200	8700	8800	0068	8900	8900	9000	9000	9006	9000	¥000	9000	9000	9100	9100	9000	0006	*	
DIS- SOLVED SOLIDS (TONS)		3.9	9.6	_		(G)	ю Ф	ი						4.0		ci o			ci ci				တ က်					2.5			છ ભુ	94	
DIS- SOLVED SOLIDS (MG/L)		18000	19000	18000	17000	16000	16000	17000	18000	19000	19000	19000	18000	18000	17000	18000	18000	18000	18000	18000	18000	1,8000	18000	19000	19000	19000	19000	19000	1900ŭ	19000	19000	** *	
SPECIFIC CONDUCT- ANCE (MICRO_ MHOS)		26800	28100	27200	25000	24700	23900	26000	26700	27700	28700	28700	27000	27400	26000	26700	27000	27300	273/0	27300	27400	27500	27500	27600	27600	27600	27600	27700	27700	27600	27600	*	
DISCHARGE (CFS-DAYS)						0.08																										1.9	•
MONTH YEAR	SEPT 1987		Q	חו	4	· w	9	7	0	0	10	11	12	13	14	15	16	17	18	19	50	21	CI CI	23	24	25	26	27	58	29	30	TOTAL	

SOUTH WICHITA RIVER BELOW LOW FLOW DAM NR GUTHR

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF OCT. 1987

HARDNESS (CA, MG) (MG/L)		*	t 1	* *	*	*	**	**	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	**	**	*	*	*	*	**	**	*	* *	2900
DIS- SOLVED SULFATE (TONS)		4	† •	+ 4	0.0	9	9.0	4.0	. 0	6	0. 4	4 .0	0.4	0.4	4 .0		ල ල	က တ	0.4	٠.		4 .0	9 .0	9 .0	4 .0	0 .		0			9.0	0 4	13	*
DIS- SOLVED SULFATE (MG/L)		0046		2500	2600	2600	2600	2000	2600	2700	2700	2700	2700	2700	2700	2760	2600	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	* *	2700
DIS- SOLVED CHLORIDE (TONS)		4	+ c	- 4	1.7	. ci	 	1. 4	1.4	H. 55	 CI	1.2	1.5	1.5	1.5	L. U	1.0	1.0	€ 	1.0	1.0	1.5	1.5	-; Ci	1. 5	1. 5	 5	1.7	1.5		0 ci	5	42	*
DIS SOLVED CHLORIDE (MG/L)		0000		000	0068	8800	8900	0088	8900	9006	0006	0006	0006	0006	9006	9000	9008	9000	9000	9000	9100	9100	9100	9100	9100	9100	9100	9100	9200	9200	9200	9300	*	9000
DIS- SOLVED SOLIDS (TONS)		o o		o co		i 0			O ဗ							(N)				0 0				is ci		တ ဗ်	9. O	က လ		a E	4.1	3. 1	87	*
DIS- SOLIDS SOLIDS (MG/L)		18000		18000	18000	18000	18000	18000	18000	19000	19000	19000	19000	18000	18000	18000	18000	18000	18000	18000	19000	19000	1900g	19000	19000	19000	19000	19000	19000	19000	19000	19000	*	19000
SPECIFIC CONDUCT- ANCE (MICRU_		00120	٠,	27200	27100	27000	27100	27000	27300	27600	27600	27600	27600	27500	27500	27400	27300	27400	27400	27500	27800	27800	27906	27900	27900	27800	27800	27900	28000	28100	28100	28200	* *	27600
DISCHARGE (GFS-DAYS)		40 0					0.05			0.00						90.0												0.07			90.0B	0.06	1.7	0.06
MONTH YEAR	OCT. 1987	-	- (N (**) 4	r uC	-0	7	00	•	10	11	51	13	14	15	16	17	18	19	0,1	21	CI.C.	53	24	25	58	27	28	29	30	31	TOTAL	WTD. AVG.

7311783 SOUTH WICHITA R BLW LOW FLOW DAM NR GUTHRIE, TX

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF NOV. 1987

HARDNESS (CA, MG) (MG/L)			*	*	*	*	**	*	*	*	*	*	*	*	*	**	*	*	**	*	*	**	*	*	*	*	*	*	**	**	*	* *		*	3100
DIS- SOLVED SULFATE (TONS)				0.51			0.36		0.44			0.37				0.37			0.30				0.30			0.30	0.23		0.23					10	*
DIS- SOLVED SULFATE (MG/L)		1	20/10	2700	5/00	2700	2700	2700	2700	2700	2700	2700	2700	2700	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800		*	2700
DIS- SOLVED CHLORIDE (TONS)		- u		~ i ·	7. 7	1. S	- -	1.2	1.5	1.5	ب ص	1. B	e :	1.3	1.3	1.3	1.0	1. 3	1.0	1.0	1. 3 E	1.0	1.0	1.0	1.0	1.0	0.78	1.0	0. 78	0. 78	0.78	1.0		36	*
DIS- SOLVED CHLORIDE (MG/L)		0000	7800	0000	7400	9100	9100	9200	9200	0066	9300	9300	9400	9400	9400	9500	9500	0096	0096	0096	9700	9700	9700	9700	9700	9700	9200	0096	9600	0096	9600	9600		* *	9400
DIS- SOLVED SOLIDS (TONS)		•	_	a -	1	T.			3. 1			12.6	15 6	2.6	9 Ci	13. 14.	ei H	3 .6	ci T		P. 7		2.1	2. 1	т Сі	ci T	1.6	2.1	1.6	1.6	1.6	2.1	(E/	* *
DIS- SOLVED SOLIDS (MG/L)		19000	0000	0000	1,000	00061	14000	19000	19000	1 9000	19000	19000	19600	19000	19000	19000	19000	20000	20002	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	,	* *	19000
SPECIFIC CONDUCT- ANCE (MICRO_ MHOS)		28100	00000	000000		27800	004/2	28000	28100	28300	28300	28400	28500	2860G	28700	28800	28800	29000	29100	29200	29300	29300	29300	29300	24300	29300	29300	29200	29100	29100	29100	29000	4	* *	28700
DISCHARGE (CFS-DAYS)				200		90.0								0.05									40.0				6. G							†	0.05
MONTH YEAR	NDV. 1987		. 0	ı e) <	t u	O -	91	_	33 (5 - (01	근 ! 근 :	12	13	ታ ፡	n .	0 !	/1	1	*	9 1	1 (א ט ע	ภ (ม «	# L	رن د (50	/ 	ו ולא ו	6	90	TOTAL		WTD. AVG.

7311763 SOUTH WICHITA R BLW LOW FLOW DAM NR GUTHRIE, TX

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF DEC. 1987

HARDNESS (CA, MG) (MG/L)		*	* *	* *	*	*	*	*	**	*.	*	*	*	*	*	*	*	**	**	*	*	*	*	*	*	*	*	**	*	*	**	*	* *	3100
DIS- SOLVED SULFATE (TONS)		0.45	o c	0.0		(d)							0.59	0. 22	0. 22			0. 44		0.36		0.55	_		0.15			51			0.46	0. 23	09	*
DIS- SOLVED SULFATE (MG/L)		0800	2800	2800	2800	2800	2800	2800	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2800	2800	2800	2800	2800	* *	2800
DIS- SOLVED CHLORIDE (TONS)			0.77	0. 77		0.77		1.0	0.76						0.74	1 2	1.5	1.5	1.5								0.74	176	 	. .	1.6	0.80	210	*
DIS- SOLVED CHLORIDE (MG/L)		9500	9500	9500	9500	9500	9500	9400	9400	9300	9300	9300	0086	6300	9200	9200	9200	9100	9100	9100	9006	0006	0006	9100	9100	9500	9100	9700	9700	9500	9760	9966	*	9600
DIS- SOLVED SOLIDS (TONS)		o e	9 7	7	1.6	1.6	1.6		1.6	2.6	13. 6 6		.•			(i)				લ હ	0 i	n :	. S	1. 3.	1.0	1.5			2.7				420	*
DIS- SOLVED SOLIDS (MG/L)		19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	18000	19000	19000	19000	19000	19000	20000	20000	19000	20000	20002	* *	20000
SPECIFIC CONDUCT- ANCE (MICRO		28900	28900	29900	28900	28600	28800	28700	28500	28200	28300	28200	28 200	28200	28000	28000	28000	27500	27600	27700	27600	27500	27600	27700	27900	28000	27900	29400	29500	28900	29500	29900	* *	29200
DISCHARGE (CFS-DAYS)			E0 0			0.03																							0.05				7.98	0.26
MONTH YEAR	DEC. 1987		ାସ	ומ	4	Ŋ	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	Old (හ : ඔ	4 :	52	56	27	28	60	30	31	TOTAL	WTD. AVG.

SOUTH WICHITA R BLW LOW FLOW DAM NR GUTHRIE, TX 7311783

1988
JAN.
ö
MONTH
뽀
FUR
LOADS
AND
MEANS
MONTHLY
AZO
DAILY

HARDNESS (CA, MG) (MG/L)	*******************************	! !
DIS- SOLVED SULFATE (TONS)	000000000444488488990000000000000000000	
DIS- SGLVED SULFATE (MG/L)	00000000000000000000000000000000000000	
DIS- SOLVED CHLORIDE (TONS)	0. 51 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	
DIS-SOLVED CHLORIDE (MG/L)	9400 9100 9500 9300 9300 9300 9500 9500 9700 9700 9700 9700 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000	
DIS- SOLVED SOLIDS (TONS)	3400 4 4 555 340 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
DIS- SOLVED SOLIDS (MG/L)	19000 17000 17000 17000 17000 20000 20000 20000 19000 19000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000	
SPECIFIC CONDUCT- ANCE (MICRO_ MHDS)	28600 27900 25800 28400 29700 29700 29700 29700 29700 29700 29700 29700 29700 29700 29700 30300 30300 30300 30200 30200 30200 30200 30200	
DISCHARGE (CFS-DAYS)	о о о о о о о о о о о о о о о о о о о	
MONTH YEAR JAN. 1988	110 4 4 4 10 110 111 113 114 115 116 117 118 119 119 119 119 119 119 119 119 119	

SOUTH WICHITA R BLW LOW FLOW DAM NR GUTHRIE, TX 7311783

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF FEB. 1988

HARDNESS (CA, MG) (MG/L)		*	*	**	*	**	*	*	*	*	*	*	*	*	**	*	*	*	**	**	*	*	*	*	*	**	* *	*	**	*	*	3500
DIS- SOLVED SULFATE (TONS)		0. 23	0.23		0.23		•	•		. •	٠	0. 23			0. 23	0. 23				0. 24				0.25			0.24	0. 24	•	0. 24	35	*
DIS- SOLVED SULFATE (MG/L)		2900	2900	2900	2900	2900	2900	2800	2800	2800	2800	2900	2900	2900	2900	2900	2900	2300	2900	2900	3100	3100	3000	3000	3000	3000	3000	3000	3000	3000	* *	3000
DIS- SOLVED CHLORIDE (TONS)		0.81	0.81	0.81		0.81	0.80								0.81	0.81				0.83	102	0.89				0.87	0.86	0.86	0.86	0.85	120	*
DIS- SOLVED CHLORIDE (MG/L)		10000	10000	10000	10000	1000ú	0066	0065	0066	0066	0066	0066	10000	10000	10000	10000	10000	10000	10000	10000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	*	11000
DIS- SOLVED SOLIDS (TONS)		1.7	1.7	1.7	1.7	1.7	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.7	1.7	1.7	1.7	1.7	1.7	1.7	206		1.8	1.8		1.8	1.8	1.7	1.7	1.7	250	*
DIS- SOLVED SOLIÚS (MG/L)		20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	21000	21000	21000	21000	22000	22000	22000	22000	22000	22000	22000	22000	21000	21000	李孝	22000
SPECIFIC CONDUCT- ANCE (MICRO		30200	30300	30200	30300	30200	30000	29900	29800	29900	29900	30000	30100	30200	30300	30300	30500	30700	3080c	30900	33000	32500	32600	32400	32200	32000	31900	31800	31700	31600	**	32600
DISCHARGE (CFS-DAYS)		60 0			E0 0																					0.03			0.03	0.03	4.24	0.13
MONTH YEAR	FEB. 1988	+	+ ព	וני) 4	+ ប) - 4	3 1-	. 0	3 6 -	10	 	12	. e	41	5	16	17	87	19	00	21	22	23	40	. 50	26	100	. œ	56	TOTAL	WTD. AVO.

HARDNESS (CA, MG) SOLVED SULFATE (TONS) SOUTH WICHITA R BLW LOW FLOW DAM NR GUTHRIE, TX SOLVED SULFATE (MG/L) DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF MAR. 1988 DIS-3000 3000 2900 2900 2900 2900 CHLORIDE DIS-SOLVED (TONS) SOLVED CHLORIDE (MG/L) DIS-10000 9900 9900 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 DIS-SOLVED SOLIDS (TONS) SOLVED SOLIDS (MG/L) 20000 20000 20000 20000 20000 20000 20000 20000 20000 21000 21000 -51 Q SPECIFIC CONDUCT-ANCE (MICRU 31300 31200 30100 30000 30000 30700 30300 30200 30100 30200 30200 30300 30300 30400 (CFS-DAYE) DISCHARGE MONTH YEAR WTD. AVG. TOTAL

MAR.

*

ÖS

o

SOUTH WICHITA P BLW LOW FLOW DAM NR GUTHRIE, TX 7311783

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF APR. 1988

HARDNESS CA, MG) (MG/L)		*	**	*	*	**	*	*	*	*	*	*	*	*	*	**	*	*	*	*	*	**	**	*	**	**	**	**	**	**	*	*	0
HARDNE (CA, MG) (MG/L		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	+	*	•	•	*	*	*	*	*	*	*	*	*	*	*	3600
DIS- SOLVED SULFATE (TONS)		0.24	0.24	0.16	0.16	0.16	0.16	0.16		0.15	0.15		0.15				0. 23		0.15	0.31			47	56	29	27	56	56	16	0.25		200	*
DIS- SOLVED SULFATE (MG/L)		2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2900	2800	2800	2800	2800	2800	2800	2800	2800	3000	3100	3100	3100	3100	3100	3100	3100	3000	*	3100
DIS- SOLVED CHLORIDE (TONS)		0.83			0.54			0.54				0.54		0.80		0.80			0.53		0.80	1.6	170	98	105	47	44	66	59	o. 92	. 88	730	*
DIS- SOLVED CHLORIDE (MG/L)		10000	10000	10000	10000	10001	10000	10000	10000	10000	10001	10000	0066	0066	0066	0066	9909	9909	9300	9800	0086	0066	11000	11000	11000	11000	11000	11000	11000	11000	11000	*	11000
DIS- SOLVED SOLIDS (TONS)		1.7	1.7	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.6	1.6	1.6	1.6	1.1	1.1		1.6		346	193	212	196	191	192	119	1.9	1 .8	1500	*
DIS- SOLVED SOLIDS (MG/L)		21000	21000	21000	21000	20000	20000	20000	20000	20000	20000	00000	20000	20000	20000	20000	20000	20000	2000	20000	20000	50000	22000	22000	22000	23000	23000	23000	23000	23000	22000	** *	23000
SPECIFIC CONDUCT- ANCE: (MICRU		30900	30700	30500	30400	೦೧೮೦೮	30300	30300	30200	30200	30100	30100	30000	30000	29900	29900	29800	29600	29700	29700	29700	29800	32500	32900	33000	33400	99800	33700	33900	009EE	323 <i>୦</i> ୦	* *	33100
DISCHARGE (CFS-DAYS)								0.62															in.					er eri	13	0 03	0 0	24 41	0.81
MONTH YEAR	APR. 1988	1	ณ	ო	4	'n	9	7	œ	0	10	11	12	13	14	15	16	17	18	19	20	121	C C C C C C C C C C C C C C C C C C C	י נאר ו נאר	45	25	10	27	28	6	90	TOTAL	WTD. AVG.

APPENDIX E

SOUTH WICHITA RIVER NEAR BENJAMIN, TEXAS
(STATION NO. 7311800)

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTHS
MAY 1987 - APR 1988

7311800 SOUTH WICHITA RIVER NEAR BENJAMIN, TEX.

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF MAY 1987

HARDNESS (CA, MG) (MG/L)		*	*	*	**	**	**	*	*	**	**	**	**	*	**	*	*	**	**	*	*	*	1400	1000	1100	1200	1300	1100	260	340	390	929	*	260
DIS- SOLVED SULFATE (TONS)		ហ	26	56	56	56	44	44	40	34	89	59	48	59	45	36	34	35	56	90	54	30	405	2710	303	144	106	355	1160	2380	1360	307	10000	. *
DIS- SOLVED SULFATE (MG/L)		2600	2600	2600	2600	2000	2000	2600	2600	2600	2500	2500	2500	2500	2000	2500	2600	2700	2800	2600	2000	2200	1200	920	1000	1100	1200	970	230	350	350	609	*	490
DIS- SOLVED CHLORIDE (TONS)		144	145	143	149	14ë	118	116	106	103	228	148	121	150	100	6 2	83	87	73	234	120	69	781	5000	565	273	203	660	1950	4070	ದೆತ್ತಾಂ	541	15000	*
DIS- SOLVED CHLORIDE (MG/L)		6700	6860	7000	7000	7000	2000	7000	7000	6900	6500	6300	0069	9300	4500	6300	0069	7300	7700	6700	4500	5000	2400	1700	1900	2100	2200	1800	390	609	009	1100	*	920
DIS- SOLVED SOLIDS (TONS)		311	314	320	322	319	254	249	228	222	496	324	264	327	225	200	192	186	155	208	271	155	1840	11900	1340	645	479	1570	4790	0966	5670	1310	45000	*
DIS- SOLVED SOLIDS (MG/L)		15000	15000	15000	15000	15000	15000	15000	15000	15000	14000	14000	14000	14000	10000	14000	15000	16000	15000	14000	10000	11000	5500	4100	4400	4900	≎5 500	4300	940	0051	1500	2600	7 2	2200
SPECIFIC CONDUCT- ANCE (MICRO_ MHOS)		21200	21400	21800	21900	22000	22000	22000	21900	21700	20500	2000C	20000	20000	14700	19900	21500	22700	23800	21000	14700	16300	7990	5830	6410	7640	7540	6230	1386	2100	2100		**	3150
DISCHARGE (CFS-DAYS)			4.7				Cri	6. 1					7.1	8.8		4.8		च प	က က	13		5.1	123	1090	e11	44	4e	133	1850	2530	1440	190	7708	6 7 0
MONTH YEAR	MAY 1987	***	เณ	n	4	ī,	•	7	00	o	10	11	12	13	14	15	16	17	18	19	50	21	ଧ	ಣ	24	25	26	27	28	9	30	31	TOTAL	WTD. AVG.

7311890 SOUTH MICHITA RIVER NEAR BENJAMIN, TEX.

DAILY AND MONTHLY REARS AND LOADS FOR THE MONTH OF JUNE 1587

HARDNESS (CA, MG) (MG/L)		940	1200	1300	1300	1600	1000	920	930	026	1000	1400	1300	1200	1400	1400	*	*	**	*	1000	860	800	520	9 30	850	1200	1100	1100	1100	1500	:		1000
D1S- SOLVED SULFATE (TONS)		226	216	178	149	141	74	2 3	47	112	47	156	71	50	36	31	93	31	25	26	2350	1110	246	143	155	206	237	185	183	788	619	8000	1	* *
DIS- SCLVED SULFATE (MG/L)		840	1100	1200	1200	1400	930	820	820	850	0.36	1200	1200	1000	1200	1300	1700	2100	2000	1900	006	760	720	470	570	760	1100	970	950	160	1300	*	. 6000	O≅&
D1S- SOLVED CHLORIDE (TONS)		411	410	340	285	280	137	4.7	85	204	179	300	174	643	£9	60	70	71	57	56	4340	2000	440	248	272	371	449	344	334	1460	1210	15000		* *
PIS- SULVED CHLÜRIDE (MG/L)		1500	2000	2200	2200	2800	1700	1500	1500	1500	1700	2300	2200	1900	2300	2400	0078	4900	4600	4200	1700	1400	1300	810	1000	1400	2100	1800	1800	1800	2600	*	i i	1700
01S- SOLVED SOLIDS (TONS)		985	973	602	672	652	327	232	204	488	428	706	411	220	162	141	160	159	129	127	10300	4800	1060	404	659	693	1050	620	807	3490	2840	35000	:	*
DIS- SCLVED SOLIES (MG/L)		3600	4700	5000 5000	5200		4000 0004	3600	3600	3 8 00	4100	5400	5 2 00	4500	5500	57.0	8200	11000	10000	0036	4100	3300	3100	2000	2400	୍ରପ୍ର	4900	4000	4200	4300	6000	7 7	1	4100
SPECIFIC CONDUCT+ ANCE (MICRO_		000B	្នាល់	75 30	7440	9430	ា ១៩	5170	5130	5430	೧೯೪೯	7ಕೆಂೆ	7570	6500	7800	8230	11900	15800	15000	13900	5910	4780	4400	្តាំក្នុង	34e	4720	7013	6170	0209	625 0	<u>0</u> 398	**************************************		5835
DISCHARGE (CFS-DAYS)		001	75	i in	34	200	(C)		re Cd	4 33	6 0	া ব	43	1.6	11			4.9			935	53.6	127	113	101	101		71	7.1	298	175	3226	6	108
MONTH YEAR	JUNE 1987		• 60	ım	4	មា	o -¢) <i>(</i>	·oo	i 0 -	10	11	12	13	14	15	16	17	18	19	20	21	69	53	24	25	56	27	50	9.0	30	TOTAL		WTD. AVG.

7311800 SOUTH WICHITA RIVER NEAR BENJAMIN, TEX.

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF JULY 1987

HARDNESS (CA, MG) (MG/L)		1 1	1200	1200	0091	# 1 # 1	# :	*	*	*	*	*	**	*	1100	1200	1700	*	909	009	930	1400	*	*	*	**	**	**	**	*	*	*	*	*	1600
DIS- SOLVED SULFATE (TONS)		(981	† 4 0 1	C C C	ָ קר קר	120	07.	112	106	105	104	101	108	304	65	80	128	116	8	100	164	221	131	111	101	91	87	83	78	73	73	89	3600	*
DIS- SOLVED SULFATE (MG/L)		Ç	000	000		0001	000	1700	20/1	1800	1900	1900	2000	2000	096	1000	1500	1500	540	540	560	1300	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	* *	1400
DIS- SOLVED CHLORIDE (TONS)		ų /c	000	770	0 L) (A) (C)	1 5	ט ני ני ני	, K.	227	227	227	224	240	565	122	161	257	204	99	176	318	476	284	240	220	198	190	180	175	159	160	150	7400	* *
DIS- SOLVED CHLORIDE (MG/L)		0.040	0000	0000	2000	0000	000	0040	00/5	OOBE	4000	4200	4400	4400	1800	2003	3000	3000	940	940	066	2500	4000	4000	4000	4100	4100	4100	4200	4200	4200	4200	4300	* *	2800
DIS- SOLVED SOLIDS (TONS)		640	100	i c	100	204	7 C	יי פיעט	4 I	217	517	515	202	541	1340	290	373	298	495	160	427	747	1080	645	546	200	450	431	404	386	360	363	334	17000	*
DIS- SOLVED SOLIDS (MG/L)		6000	6100	6200	0007	7500	7000	0.00	7 1	00/8	0014	9500	9900	10000	43 00	4700	0 069	00 69	2300	2300	2400	28 00	91 00	9200	9200	9300	9300	9400	9500	9500	9500	96 00	9200	*	6400
SPECIFIC CONDUCT- ANCE (MICRO_ MHOS)		86.00	0000	000	10000	10800	11400	10100		0000	00 001	13800 0000	14300	14500	6140	6730	06 66	10000	3300	3280	3450	8320	13200	13300	13300	13400	13400	13600	13700	13600	13800	13900	14000	*	0256
DISCHARGE (CFS-DAYE)		53	1 4	3.4	. 0. 1 (f)	1 e	100	730	- C	પ ક	12	٠ الآر	19	20	117	53	20	ଖଳ	9B	20	99	84	44	26		O F	a)	. 71	16	15	14	7 1	13	676	ଅଟ
MONTH YEAR	JULY 1987	-	เป	ı m	1 4	. iU) [. 0	0 0	• •	01		12	13	14	in :	16	17	9	19	50	101	Ci (7) (1)	471	ίς L	56	27	(M)	53	30	31	TOTAL	WTD. AVG.

7311800 SOUTH WICHITA RIVER NEAR BENJAMIN, TEX.

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF AUG. 1987

HARDNESS (CA, MG) (MG/L)		1	* :	*	**	**	530	1600	**	**	*	*	**	**	**	1500	*	*	**	**	*	**	*	*	*	*	**	**	920	1200	1400	**	*	*	1400
DIS- SOLVED SULFATE (TONS)		ť,	ים פו	B	28	373	167	62	56	51	20	51	23	20	107	34	36	81	76	93	53	7.2	26	24	42	23	G	77	251	36	43	4 3	42	2100	*
DIS- SOLVED SULFATE (MG/L)		000	000	1400	2000	1700	480	1400	1600	1700	1800	1900	2000	2000	1900	1300	1800	1800	1900	1600	1700	1800	1800	1900	1900	2000	2000	1600	590	1100	1200	1600	1700	* *	1200
DIS- SOLVED CHLORIDE (TONS)		00.	100	15/	128	780	290	123	116	107	106	112	118	113	231	99	78	172	164	69	62	58	52	in in	52	52	20	157	443	73	83	- -	68	4400	*
DIS- SOLVED CHLORIDE (MG/L)		0000		4300	4300	3500	830	2700	3300	3600	3500	4300	4600	4600	4100	2500	3800	3700	4000	3300	0078	3800	3900	4100	4300	4400	4600	3200	1000	2100	2400	3300	3600	* *	2400
DIS- SOLVED SOLIDS (TONS)		6.50	ָ ֓֞֞֞֜֞֞֜֞֞֞֜֞֞֜֞֞֜֞֞֞֜֞֞֜֞֞֜֞֡֓֓֓֓֓֡֓֡֓֡	יב מ /	586	1790	706	287	267	246	243	253	266	254	525	155	177	393	372	158	141	133	126	121	118	116	112	363	1070	173	194	202	204	00001	*
DIS- SOLVED SOLIDS (MG/L)		0200	0070	1100	9200	8100	2000	6200	2600	8300	9000	9700	10000	10000	9390	5800	9 6 00	6600	9200	7600	8300	8600	9000	9300	0026	10000	10000	7500	2500	4900	5500	2600	9 3 90	*	5700
SPECIFIC CONDUCT- ANCE (MICRO		14000			14100	11700	2 6 20	9050	11000	12000	13000	14000	15000	15000	13400	8400	12500	12400	13300	11000	12000	12500	13000	13500	14000	14500	15000	10800	3600	7100	00 08	11000	12000	* ** *	B1 70
DISCHARGE (CFS-DAYS)		C	j	-	11	85	129	17	13	11	10	7.6		9.1	15 15 15 15 15 15 15 15 15 15 15 15 15 1	6 .6	7.6	17		7.7	ত ভ	5.7	ଖ : ଶ				4	18	159	10	e 1	10	9.1	659	21
MONTH YEAR	AUG. 1987	-	+ n	ul (m	4	ហ	9	7	00	6	10	11	ci -	13	4	15	16	17	18	19	20	21	Cel (m (4 (1)	(C)	26	75	0	60	30	31	TOTAL	WTD, AVG.

DAILY AND MONTHL, MEANS AND LOADS FOR THE MONTH OF SEPT 1987

SOUTH WICHITA RIVER NEAR BENJAMIN, TEX

HARDNESS (CA, MG) 790 790 11100 1400 1400 1500 1300 1500 DIS-SOLVED SULFATE (TONS) 100 960 DIS-SOLVED SULFATE (MG/L) 1300 DIS-SOLVED CHLORIDE (TONS) DIS-SOLVED CHLORIDE (MG/L) 2600 DIS-SOLVED SOLIDS (TONS) 187 154 139 127 1110 1111 97 88 81 140 1150 1165 129 129 105 92 85 85 85 DIS-SOLVED SOLIDS (MG/L) 6100 SPECIFIC CONDUCT-ANCE (MICRO_ MHOS) 8770 DISCHARGE (CFS-DAYS) ಲ್ಕಡಪ್ಪಡೆದೆ ಪ್ರವರ್ಷ ಪ್ರತಿ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯವಿ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯ ಪ್ರತ್ಯಾತ್ರ ಪ್ರವ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರವರ್ಷ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರತ್ಯಾತ್ರ ಪ್ರವರ್ಣ ಪ್ರತ್ಯ ಪ್ರತ್ಯಾತ್ರ ಪ್ರಕ್ಷ ಪ್ರತ್ಯ ಪ್ರವ್ಯ ಪ್ರತ್ಯ ಪ್ರಕ್ಷ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರಕ್ಷ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರಕ್ಷ ಪ್ರತ್ಯ ಪ್ರಕ್ಷ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರಕ್ಷ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರಕ್ಷ ಪ್ರತ್ಯ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರತ್ಯ ಪ್ರಕ್ಷ ಪ್ರತ್ಯ ಪ್ರತ್ಯ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರತ್ಯ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರವತ್ತ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರವತ್ತ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರವತ್ತ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರವತ್ತ ಪ್ರವ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರವ ಪ್ರಕ್ಷ ಪ್ರಕ್ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರವ್ಯ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರವ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷ ಪ **~~○4回母~②◆母母S** Cij œ MONTH YEAR SEPT 1987 WTD. AVG. TOTAL

7311800 SOUTH WIGHITA RIVER NEAR BENJAMIN, TEX.

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF OCT. 1987

HARDNESS (CA, MG) (MQ/L)			**	*	*	*	*	*	*	*	*	*	*	*	*	**	*	*	**	*	*	*	*	*	*	**	*	**	*	**	*	*	*		* *	2700
DIS- SOLVED SULFATE (TONS)			4.4	89.89				7.8	7.2	9.9				7.3					10	4	10	7.8	in o				0 .0		7.7				5.7	;	250	*
DIS- SGLVED SULFATE (MG/L)		r C	5500	2200	2200	2200	2200	2200	2200	2200	2200	2300	2200	2300	2200	2200	2200	2200	2200	2300	2200	2200	2200	2200	2200	2200	2200	2300	2200	2300	2300	2300	2300	·	*	2200
DIS- SOLVED CHLORIDE (TONS)		r C	ેઇ (ઇ	ଧ	18	18	18	18	17	15	16	16	16	17	50	19	50	53	24	27	83	18	14	5	17	20	Z.	ଧ	18	22		19	13	1	290	*
DIS- SGLVED CHLORIDE (MG/L)		6	2000	2000	5100	5100	5200	5200	5200	5200	5200	5300	5300	5300	5300	2300	5200	5200	5200	2300	5100	5200	2000	5200	5200	5200	5200	5300	5100	2300	5300	5400	5400		* *	5200
DIS- SOLVED SOLIDS (TONS)		0	D T	46	0	40	40	41	38	34	35	35	35	38	44	41	4	20	54	61	52	40	ဝင်	34	8	44	47	45	40	48	51	42	90	0	1300	* *
DIS- SOLIDS SOLIDS (MG/L)			20011	11000	11000 1	11000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	11000	12000	11000	12000	12000	12000	12000	12000	11000	12000	12000	12000	12000	, 3	* *	12000
SPECIFIC CONDUCT- ANCE (MICRU-		14900			16500	16500	16700	16900	16800	16700	16900	17100	17600	17100	17000	17000	16700	16930	16900	17200	16500	16700	16300	16800	16800	16400	16900	17160	16500	17100	17200	17300	17400		k k	16800
DISCHARGE (CFS-DAYS)		7) t			e ,	en :	1	 (₁.	# .# .#	1.1	# .#	1.1	# F	1.4	1. a	4.1	1.6	1.7	6-i	1.7	en (1. O	(7	SP (4	en :	1.5	1.6	ю. <mark>Т</mark>	6 .0	64	il r	1.3
MONTH YEAR	DCT. 1987	-	• (N C	. tu	4	S	9	7	00		10	77	4	13	र्च । स्म	n ·	16	71	D (14	Q •	100	`U (7 . C	† i	ט (מ מ	Q	\ \frac{1}{2}	e e	60	30	31	TOTA		MTD. AVG.

7311500 SOUTH WICHITA RIVER NEAR BENJAMIN, TEX.

DAILY AND MONTHLY NEANS AND LOADS FOR THE MONTH OF NOV. 1987

	HARDNESS (CA, MG) (MG/L)	* * * * * * * * * * * * * * * * * * * *	** * * * * * * * * * * * * * * * * * * *	
	DIS- SOLVED SULFATE (TONS)	よううみようふうようからでほからでほうできなって よううなようないないない。 よらなままるなす。 ならなままないではいではないできる。	25 13 13 13	
•	DIS- SûLVED SULFATE (MG/L)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* 5000 * 5000 * 5000 * 5000	
	DIS- SOLVED CHLORIDE (TONS)	01 04 04 04 04 04 04 04 04 04 04 04 04 04		
	DIS- SOLVED CHLORIDE (MG/L)	5400 5300 5300 5300 5300 5300 5400 5400	* * * \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
	DIS- SGLVED SOLIDS (TONS)	66 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1200	
	DIS- SOLIDS SOLIDS (MG/L)	120000 130000 130000 130000 130000 130000 130000 130000 130000 130000 130000 130000 130000 130000 130000 130000	14000 ** 13000	
	SPECIFIC CONDUCT- ANCE (MICRO MHOS)	17400 17500 17500 17100 17100 17200 17200 17700 17400 17400 17400 17400 17400 17400 17400 17400 17400 17400 17400 17400 17400 17400 17400 18500 18500 19500 19500 19500	19600 ** 18700	
	DISCHARGE (GFS-DAYS)	QQQQQQQQQQQQQqqqqqqqqqqqqqqqqqqqqqqqqq	34.25	
	MONTH YEAR NOV. 1987	10040404000000000000000000000000000000	JO TOTAL WTD. AVG.	

7311800 SOUTH WICHITA RIVER NEAR BENJAMIN, TEX.

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF DEC. 1987

HARDNESS (CA, MG) (MG/L)		*	*	*	**	*	*	**	**	**	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	**	*	**	*	**	*		* *	2700	
DIS- SOLVED SULFATE (TONS)		13	13	14	14	14	15	13	13	51	13	13	13	13	19	55	21	21	53	ର	83	62	17 17	8	80	89	4 3	31	88	37	89	28	ļ	0/9	# #	
DIS- SGLVED SULFATE (MG/L)		2500	2500	2500	2500	2400	2400	2500	2500	2400	2500	2500	2500	2500	2500	2400	2400	2400	2400	2400	2300	2300	2300	2300	2300	2300	2200	1900	1700	2000	2000	2000		* *	2300	
DIS- SOLVED CHLORIDE (TONS)		35	33	93	35	34	36	31	33	31	32	93	35	32	47	54	52	52	56	49	52	52	50	4 8	4 8	164	101	29	, 0 9	82	E9 ,	64		1600	*	
DIS- SOLVED CHLORIDE (MG/L)		6200	6100	o100	6100	6100	6100	9100	6100	0007	6100	6100	6100	6200	9029	0009	6100	6100	2900	2200	5700	5700	2200	2600	5600	5500	5100	4100	3500	4500	4400	4500	:	* *	5400	
DIS- SOLVED SOLIDS (TONS)		70	73	76	76	75	79	69	73	89	69	73	69	69	102	118	115	115	122	108	121	121	111	107	107	363	226	151	152	185	142	143	0	0005	* *	
DIS- SOLVED SOLIDS (MG/L)		14000	13000	13000	13000	13000	13000	13000	13000	13000	13000	13000	13000	14000	14000	13000	13000	13000	13000	13000	12000	12000	12000	12000	12000	12000	11000	9300	800 <u>0</u>	10000	9900	10000	2	*	12000	
SPECIFIC CONDUCT- ANCE (MICRO_		19700	19500	19400	19400	19300	19300	19400	19500	19200	19500	19500	19500	19600	19600	19200	19300	19300	18800	18200	18100	18100	18100	17900	17900	17700	16600	13500	11600	14800	14400	14800	:	* *	17200	
DISCHARGE (CFS-DAYS)		2.	O G	ri ri	TI Ci			1. 9			1.9			1 0									ල . ල				٦ ص ٧	0.9			e e e		40 (-		e er	
MONTH YEAR	DEC. 1987	-4	Cul	ო	4	'n	9	7	80	6	10	11	12	13	14	15	16	17	18	19	50	រា	22	ខ្លួ	4	25	26	27	58	56	30	1E	ואדמד	7	WTD. AVG.	

7311800 SOUTH WICHITA RIVER NEAR BENJAMIN, TEX.

1988
CAN.
H
MONTH
Ή
FUR
LOADS
AND
MEANS
MONTHL
GNA
DAILY

HARDNESS (CA, MG) (MG/L)		*	**	*	**	*	*	*	*	*	*	*	*	*	*	*	*	*	* *	*	*	*	*	*	*	*	**	*	*	*	**	*	**		2500
DIS- SOLVED SULFATE (TONS)		58	S	24	53	22	50	21	50	50	S	õ	43	34	35	42	52	51	52	52	48	46	41	36	32	68	27	24	53	21	19	19	970		*
DIS- SOLVED SULFATE (MG/L)		2100	2100	2100	2100	2100	2100	2200	2100	2100	2100	2100	2100	2100	2100	2100	2100	2000	2000	2000	2000	2000	2000	2000	2200	2200	2200	2200	2100	2100	2200	2200	* *		2100
DIS- SOLVED CHLORIDE (TONS)		64	57	54	52	49	46	49	45	64	45	44	9.8	78	72	96	118	115	115	115	107	101	90	88	81	67	62	56	52	47	44	45	2200		*
DIS- SOLVED CHLORIDE (MG/L)		4700	4700	4700	4800	4800	4700	5100	4900	4400	4900	4700	4800	4900	4900	4900	4900	4500	4300	4400	4400	4400	4400	4500	5100	5200	5100	5000	4900	4900	5000	5100	*		4700
DIS- SOLVED SOLIDS (TONS)		143	128	122	116	110	103	108	101	101	101	100	220	174	162	215	265	259	260	260	241	25 8	203	199	180	149	138	125	116	106	66	101	4900	!	*
DIS- SOLVED SOLIDS (MG/L)		11060	10000	10000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	10000	9800	10000	10000	· 9900	9900	10000	11000	12000	11000	11000	11000	11000	11000	11000	tt T		11000
SPECIFIC CONDUCT- ANCE (MICRO		15300	15200	15200	15500	15500	15400	16600	16000	16000	15900	15300	15500	15800	15800	15800	15800	14800	14200	14500	14500	14400	14300	14800	16400	16700	16530	16300	16000	15800	16100	16400	*		15400
DISCHARGE (CFS-DAYS)		C vr			_) w		: ທ : ຕ່			-				5.5									7.9								e) ei	1 22 1		Ø. 6
MONTH YEAR	JAN. 1988	•	٠ (١	u m	1 4	- ហ	. 4	ı r	. 00) (P	10	11	12	13	14	15	16	17	18	19	20	21	25	53	24	25	56	72	28	68	000	31	,	1	WTD. AVG.

7311800 SOUTH WICHITA RIVER NEAR BENJAMIN, TEX.

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF FEB. 1988

HARDNESS (CA, MG) (MG/L)		*	* *	*	**	*	**	*	*	*	*	*	**	**	*	*	*	*	*	*	*	*	*	*	*	*	*	**	*	*	; ;	k	2900
DIS- SOLVED SULFATE (TONS)		00	8 8	22	21	42	28	25	25	24	53	25	24	21	02	16	16	15	4	15	16	15	16	77	12	15	17	17	15	14	Q U	000	*
DIS- SULVED SULFATE (MG/L)		5000	2300	2300	5300	2300	2300	2300	2300	2300	2400	2500	2400	2300	2400	2400	2400	2400	2400	2400	2400	2300	2400	2400	2400	2400	2400	2400	2400	2400	3	*	2300
DIS- SOLVED CHLORIDE (TONS)		47	47	in Cur	51	SB	29	99	59	22	35	56	61	49	48	34	40	35	34	37	38	32	39	32	30	37	42	43	36	32	000	1300	* *
DIS- SOLVED CHLORIDE (MG/L)		5000	5500	5500	5600	5500	5400	5400	5500	5500	5700	6999	6100	2800	5700	5700	5700	5700	5700	5700	5700	2200	5700	5900	5800	5800	5800	5900	5900	5900		*	5700
DIS- SCLVED SCLVED (TONS)		104	101	115	611	129	148	132	131	126	122	122	133	109	105	83	88	78	75	81	85	78	82	77	99	82	93	94	90	77	Ç	00.ó	* *
DIS- SOLVED SOLIDS (MG/L)		10000	12000	12000	10000	12000	12000	12000	12000	12000	13000	14000	13000	12000	13000	13000	13000	13000	13000	13000	13000	1,2000	13000	13000	13000	13000	13000	13000	13000	13000		ф 2	1:30:00
SPECIFIC CONDUCT- ANCE (MICRO_ MHDS)		1,4900	17500	17700	17500	17700	17300	17300	17600	17800	18200	20500	19300	17800	18200	18300	18200	18200	18200	18200	18200	18100	18300	1880c	18600	18400	18500	18700	1870@	18900		* *	18100
DISCHARGE (CFS-DAYS)								4.4																								3 3	о е
MONTH YEAR	FEB. 1988	-	• C	ורי) 4	- თ	1 -0	· ^	60	0	10	11	12	51	4	÷ n	16	17	18	19	50	21	ดเ	වය	45	25	26	72	28	59		TOTAL	WTD. AVG.

SOUTH WICHITA RIVER NEAR BENJAMIN, TEX. 7311800

			ESS	C.																																		
			HARDNESS	(T/9W)		*	1500	640	1300	*	*	*	*	*	*	*	*	*	*	*	**	*	*	*	*	**	*	*	*	*	*	*	**	*	*	*	*	2200
		DIS-	SOLVED	(TONS)		e.	108	2	17	23	27	27	52	22	21	19	16	14	15	15	14	18	17	. 71	16	16	S	15	13	11	_		_	89		8.7	580	*
ΙΕΆ.	R. 1988	DIS-	SOLVED	SOLFAIE (MG/L)		2400	1300	570	1100	1600	2000	2200	2300	2300	2300	2300	2300	2400	2400	2400	2400	2300	2300	2300	2400	2400	2400	2400	2400	200	2500	2500	2500	2500	2500	2500	* *	1800
ENGARIN' I	MONTH OF MAR.	DIS-	SOLVED	(TONS)		35	212	35	33	46	09	63	5 B	53	50	45	39	94 4	36	36	32	4	41	4	39	<u>ት</u>	98	27	ପ୍ତ	9	.	೧೮	22	2	13	CI CI	1300	*
	FUR THE	D18-	SOLVED	(MG/L)		5900	2600	1000	2100	3300	4500	5200	5400	5400	9600	2500	5600	5700	5800	5800	5800	2600	2600	2600	5700	5800	5800	0040	0000	0000	c100	6100	6200	6200	ć30¢	6200	*	4100
COOL MICHIEM KIVER NEAR	S AND LOADS	-SIJ	SOLVED	(SNOT)		70	496	8 %	77	107	136	141	129	117	110	66	84	75	79	80	76	93	90	90	82	86	80	 10 i	7.	9	54	44	47	44	41	47	3000	*
1000	AND MONTHLY MEANS	-51g	SOLVED	(M0/L)		13000	6100	2400	4900	7600	10000	12000	12000	12000	12600	12000	12000	13000	13000	13000	13000	12000	12000	12000	13000	13000	13000	00001	13000	00001	13000	13000	14000	14000	14000	14000	*	9200
202110	DAILY AND M	SPECIFIC CONDUCT-	ANCE	MHOS		18700	8840	3520	7120	11000	14600	16800	17300	17400	17900	17800	18000	18300	18500	18 € ○○	18600	17900	1800G	18000		18400	0000	0040	00141	20147	14500	2000	1 %00°	19800	19900	19600	*	13300
			OTSCHABOR	(CFS-DAYS)		2.0	30	61				4.5	-		(1) (1)								, ci								n (1d 1	γ) <i>(</i>	Od -		en H	120	ক ভ
				-	_																																	
				MONTH YEAR	MAR. 1988	-	CI	ന	4	ŝ	.	7	œ	6 -	01		12	E :	4		16	17	18	19	Q Cu	i d	W 67	3 6	† u	તું હ	1 O		D (6	9	1E	TOTAL	WTD. AVG.

7311860 SOUTH WICHITA RIVER NEAR BENJAMIN, TEX.

DAILY AND MONTHLY MEANS AND LOADS FOR THE MONTH OF APR. 1988

HARDNESS (CA, MG) (MG/L)		*	*	*	*	*	*	**	*	**	**	*	**	*	**	*	*	940	1100	1400	**	*	*	**	**	*	*	*	**	**	*	*	2000
DIS- SOLVED SULFATE (TONS)		11	15	14	13	11	11	10		69	13	11	9.7			හ ග්		79	38	21	83	28	27	21	17	15	14	10	15	25	28	530	*
DIS- SOLVED SULFATE (MG/L)		2400	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2000	2500	2500	2500	2500	830	940	1200	1700	2100	2200	5300	2300	2500	2500	2400	2400	2500	2500	* *	1700
DIS- SCLVED CHLORIDE (TONS)		S	37	35	35	31	27	25	22	23	35	27	25	40	60	21	21	144	71	41	48	64	79	51	04	38	35	26	38	63	72	1200	*
DIS- SOLVED CHLORIDE (MG/L)		6000	6200	6200	6200	6400	9300	6200	6400	6400	6200	0059	6600	6500	6500	6500	6500	1500	1700	2400	3200	4700	5200	5300	5500	6100	6200	0000	6000	6400	6500	*	3800
DIS- SOLVED SOLIDS (TONS)		61	80	77	70	29	99	55	49	49	70	09	54	23	20	46	46	344	168	96	109	144	139	112	84	83	77	57	82	138	156	2700	*
DIS- SOLIDS SOLIDS (MG/L)		13000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	3600	4200	5500	8100	11000	12000	12000	12000	13000	14000	13000	13000	14000	14000	ж	8600
SPECIFIC CONDUCT- ANCE (MICRO_ MHOS)		19200	19600	19800	19800	20100	20000	19700	20100	20300	19800	2000	20800	20400	20600	20603	20503	5250	୧୯୦୦	00 08	11700	15400	16900	17200	17700	19400	19600	19100	19200	20100	20400	* *	12400
DISCHARGE (CFS-DAYS)		1.7	ri N	i ni	1.9	1.00	1.6	1.5	1.3	, E.1	1.9	1.6	1.4	1. 4				35	15				4.4									118 5	4.0
MONTH YEAR	APR. 1988	-	· (N	ומ	.4	ß	9	7	œ	o	10	11	12	13	14	15	16	17	18	19	20	21	CI CI	53	46	25	26	27	58	6.01	90	TOTAL	WTD, AVG.